Skip to main content

Revista SESAP

Pablo Riccardi - Bibliografía

Impacto nutrigenómico de las enfermedades cardiometabólicas

Dr. Pablo Riccardi

BIBLIOGRAFÍA:

1. Gaylis JBLevy SSKviatkovsky SDeHamer RHong MY. Relationships between physical activity, food choices, gender and BMI in Southern Californian teenagers. Int J Adolesc Med Health. 2017 Nov 23

2. McCrindle BW. Cardiovascular consequences of childhood obesity. Can J Cardiol. 2015;31:124–30.

3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

4. Roche SL, Silversides CK. Hypertension, obesity, and coronary artery disease in the survivors of congenital heart disease. Can J Cardiol. 2013;29:841–8.

5. Després J-P. Obesity and cardiovascular disease: weight loss is not the only target. Can J Cardiol. 2015;31:216–22.

6. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science (New York, NY) 2005;308:1466–9

7. Kaati GBygren LOEdvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet.2002 Nov;10(11):682-8.

8. Prentice AM, Hennig BJ, Fulford AJ (November 2008). "Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release?". Int J Obes (Lond). 32 (11): 1607–10. doi:10.1038/ijo.2008.147PMID18852700.

9. Kaplan, Hillard et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study The Lancet , Volume 389 , Issue 10080 , 1730 - 1739

10. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham Study. Am J Public Health. 1957;47:4-24. 

11. Paul Cullen, Helmut Schulte, Gerd Assmann. The Münster Heart Study (PROCAM) Total Mortality in Middle-Aged Men Is Increased at Low Total and LDL Cholesterol Concentrations in Smokers but Not in Nonsmokers. Circulation. 1997;96:2128-2136. Originally published October 7, 1997

12. Miller GJ et al. Relationship between markers of activated coagulation, their correlation with inflammation, and association with coronary heart disease (NPHSII). Thromb Haemost. (2008)

13. Zende PD, Bankar MP, Kamble PS, Momin AA. Apolipoprotein E Gene Polymorphism And Its Effect On Plasma Lipids In Arteriosclerosis. Journal of Clinical and Diagnostic Research : JCDR. 2013;7(10):2149-2152. doi:10.7860/JCDR/2013/6195.3455.

14. Amy J Tucker, Kathryn A MacKay, Lindsay E Robinson, Terry E Graham, Marica Bakovic and Alison M Duncan. The effect of whole grain wheat sourdough bread consumption on serum lipids in healthy normoglycemic/normoinsulinemic and hyperglycemic/hyperinsulinemic adults depends on presence of the APOE E3/E3 genotype: a randomized controlled trial. Nutrition & Metabolism 2010; 7: 37

15. Effect of Apolipoprotein E Genotype and Saturated Fat Intake on Plasma Lipids and Myocardial Infarction in the Central Valley of Costa Rica Yadong Yang, Edward Ruiz-Narvaez, Peter Kraft, and Hannia Campos Human Biology 2007 79 (6), 637-647

16. Pablo Perez-Martinez, Antonio Garcia-Rios, Javier Delgado-Lista, Francisco Perez-Jimenez, Jose Lopez-Miranda. Nutrigenetics of the Postprandial Lipoprotein Metabolism: Evidences From Human Intervention Studies. Curr Vasc Pharmacol 2011; 9 (3): 287-91.

17. Hsu LA, Ko YL, Chang CJ, Hu CF, Wu S, Teng MS, et al. Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary artery disease among Chinese in Taiwan. Atherosclerosis 2006; 185 (1): 143-9.   

18. Josiemer Mattei, Serkalem Demissie, Katherine L. Tucker, and Jose M. Ordovas. Apolipoprotein A5 Polymorphisms Interact with Total Dietary Fat Intake in Association with Markers of Metabolic Syndrome in Puerto Rican Older Adults J. Nutr. December 2009 139: 2301-2308

19. Jose M Ordovas, Dolores Corella, L Adrienne Cupples, Serkalem Demissie, Alison Kelleher, Oscar Coltell, Peter WF Wilson, Ernst J Schaefer, and Katherine Tucker. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study Am J Clin Nutr 2002 75: 38-46

20. E. Shyong Tai, Dolores Corella, Serkalem Demissie, L. Adrienne Cupples, Oscar Coltell, Ernst J. Schaefer, Katherine L. Tucker, and Jose M. Ordovas. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study J. Nutr. 2005 135: 397-403

21. Maria G.V. Gottlieb , Carla H.A. Schwanke, Adriana F.R. Santos , Paulo F. Jobim , Denise P. Müssel3 and Ivana B.M. da Cruz. Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population Genet Mol Res. 2005 Dec 30;4(4):691-703

22. Wan-Fen Li, Chien-Wen Sun, Tain-Junn Cheng, Kuang-Hsi Chang, Chien-Jen Chen, Shu-Li WangRisk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan. Toxicol Appl Pharmacol.2009 Apr 15;236(2):246-53. doi: 10.1016/j.taap.2009.01.019. Epub 2009 Feb 5.

23. P. N. Durrington, B. Mackness and M. I. Mackness Paraoxonase and Atherosclerosis Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21:473-480, originally published April 1, 2001

24. Petersson, H., Risérus, U., McMonagle, J., Gulseth, H., Tierney, A., Morange, S., Basu, S. (2010). Effects of dietary fat modification on oxidative stress and inflammatory markers in the LIPGENE study. British Journal of Nutrition, 104(9), 1357-1362. doi:10.1017/S000711451000228X

25. Bénédicte Fontaine-Bisson, Thomas MS Wolever, Jean-Louis Chiasson, Rémi Rabasa-Lhoret, Pierre Maheux, Robert G Josse, Lawrence A Leiter, N Wilson Rodger, Edmond A Ryan, Philip W Connelly, Paul N Corey, and Ahmed El-Sohemy Genetic polymorphisms of tumor necrosis factor-α modify the association between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations Am J Clin Nutr September 2007 86: 768-774

26. Karely Pulido-Gómez, Yazmín Hernández-Díaz, Carlos Alfonso Tovilla-Zárate, Isela Esther Juárez-Rojop, Thelma Beatriz González-Castro, María Lilia López-Narváez, Mariela Alpuin-Reyes Association of G308A and G238A Polymorphisms of the TNF-α Gene with Risk of Coronary Heart Disease: Systematic Review and Meta-analysis Arch Med Res. 2016 Oct;47(7):557-572. doi: 10.1016/j.arcmed.2016.11.006

27. De Lorenzo, A., Bernardini, S., Gualtieri, P. et al. Acta Diabetol (2017) 54: 141. https://doi.org/10.1007/s00592-016-0917-2

28. The Mediterranean Diet, its Components, and Cardiovascular Disease Widmer, R. Jay et al. The American Journal of Medicine , Volume 128 , Issue 3 , 229 - 238

29. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Dehghan, MahshidDiaz, R et al. The Lancet , Volume 390 , Issue 10107 , 2050 - 2062

Capriles - Bibliografía

La epigenética como vínculo entre la nutrición y el cáncer

Dr. Carlos Capriles-Drayer

Bibliografía:

1.Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol (2015) 218, 59-70

2.Tume-Farfan LF. Las alteraciones epigenéticas en la progresión del cáncer. GAMO 2014; 13(4):236-243

3.Vel Szic, Katarzyna Szarc et al. From Inflammaging to Healthy Aging by Dietary Lifestyle Choices: Is Epigenetics the Key to Personalized Nutrition? Clinical Epigenetics 7.1 (2015): 33. PMC. Web. 27 June 2015.

4.Shukla, Samriddhi et al. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Letters, 2014; 355(1), 9-17

5.Menendez, P.et al. Epigenetica y cancer colorrectal Cir Esp. 2012; 90(5):277-283

6.Franco Vera, L. Enfermedades epigeneticas: desde el cancer hasta la sordera. Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 2009

7.Thakur et al. Plant Phytochemicals as Epigenetic Modulators: Role in Cancer Chemoprevention. The AAPS Journal, 2014;16(1):151-163

8.Supic G. et al. Epigenetics: A New Link Between Nutrition and Cancer. Nutrition and Cancer, 2013;65(6), 781-792

9.Lagos-Sanchez E.; Soto-Monge T. Epigenetica y Cancer. Revista Médica de Costa Rica y Centroamérica; 2007;64(580),177 182

10.Valdespino-Gómez VM., Valdespino-Castillo VE., Terapia epigenetica en el cancer. Cir Cir 2012;80:470- 480.

11.Marsit CJ., Influence of environmental exposure on human epigenetic regulation. J Exp Biol 2015;218, 71-79

12.Ondarza RN.; La epigenética, la otra cara de la genética. Guevara Fonseca J, Matuz Mares D, Vázquez Meza H (eds.) Mensaje Bioquímico, 2012; XXXVI, 200-211, Depto de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. C. Universitaria, México, DF.

13.Hardy TM., Tollefsbol TO., Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011; 3(4): 503-518

14. Phillips, T. (2008) Small noncoding RNA and gene expression. Nature Education 1(1):115

15.Esteller Badosa M. Epigenética en medicina: Más allá del genoma. An. R. Acad. Med. Comunitat Valenciana, 2013; 14:

16.Amaya et al. Metilación del gen RAS Association Domain Family 1A (Rassf1-A) en cáncer de cérvix. VIII Congreso Virtual Hispanoamericano de Anatomía Patológica – 2006. Actas Hispanoamericanas de Patologia 2006.

17.Pirouzpanah S. et al. Association of folate and other onecarbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J Mol Med (Berl). 2015 Mar 25.

18.Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem. 2013;329:73132.

19.Gerhauser C. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Curr Opin Clin Nutr Metab Care. 2013 Jul;16(4):405-10.

20.Triff K. et al. Chemoprotective epigenetic mechanisms in a colorectal cancer model:

21.Modulation by n3 PUFA in combination with fermentable fiber. Curr Pharmacol Rep. 2015 Feb;1(1):1120.

22.Zhang Y., Chen H. Genistein, an epigenome modifier during cancer prevention. Epigenetics, 6:7, 888-891,

23.Atwell LL. et al. Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. Curr Pharmacol Rep. 2015 Apr 1;1(2):102-111

24.Clarke JD. Et al. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008; 269(2):291-304

25.Dashwood RH., Ho E. Dietary histone deacetylase inhibitors. Semin Cancer Biol. 2007; 17(5): 363-369

26.Link A. et al. Cancer Chemoprevention by Dietary Polyphenols: Promising Role for Epigenetics. Biochem Pharmacol. 2010 December 15; 80(12): 1771-1792

27.Henning SM. et al. Epigenetic effects of green tea polyphenols in cancer. Epigenomics. 2013 December ; 5(6):729-741

28.Shankar S. et al. Epigenetic Modifications by Dietary Phytochemicals: Implications for Personalized Nutrition. Pharmacol Ther. 2013 April ; 138(1): 1-17

29.Jiménez-Illera JC., Cardenas ML. Procaína, epigenética y terapia neural en el cáncer, ¿una alternativa terapéutica? Med UIS 2011;24(2):173-80.

30.Qin W, Zhu W, Shi H, et al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutri Cancer. 2009; 61:238–244.

31.Bishop KS., Ferguson LR. The Interaction between Epigenetics, Nutrition and the Development of Cancer. Nutrients 2015, 7, 922-947

32.John C. Mathers JC., Hesketh JE. The Biological Revolution: Understanding the Impact of SNPs on Diet-Cancer Interrelationships. J. Nutr. 137: 253S–258S, 2007

Raquel Marín - Bibliografía

Nutracéuticos en neuroprotección: la importancia de los ácidos grasos poliinsaturados

Dra. Raquel Marín

BIBLIOGRAFÍA:

  1. Bazinet RPLayé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci.2014; 15(12): 771-85.
  2. Casañas V, Perez JA, Fabelo N, et al. Addition of docosahexaenoic acid (DHA), but not arachidonic acid (ARA), activates glutathione and thioredoxin antioxidant systems in murine hippocampal HT22 cells: potential implications in neuroprotection. J. Neurochem. 2014; 131 -14; 470 - 483.
  3. Diaz M, Fabelo N, Ferrer I, et al. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer's disease. Journal Alzheimer's Dis. 2015 : 43; 1185 - 1198.
  1. Diaz M, Fabelo N, Martin V, et al. Biophysical alterations in lipid rafts from human cerebral cortex associate 2 with increased BACE1/APP interaction in early stages of Alzheimer's disease. J. Alzheimer's Dis. 2014: 43; 1185 - 1198.
  2. Diaz M, Marin R. Brain polyunsaturated lipids and neurodegenerative diseases. Nutraceuticals and Functional foods Brar et al. (editores). Nova Science Publishers, 2014; 387-412. ISBN: 978-1-62948-783-0.
  3. Elisha B, Guebre-Egziabher F, Vidal H, et al. From French to Mediterranean diet: importance of the omega-6/omega-3 fatty acids ratio. World Rev Nutr Diet. 2011; 102: 81-91. 
  4. Florent-Béchard S, Desbène C, Garcia P, et al. The essential role of lipids in Alzheimer's Disease. Biochimie.2009; 91(6): 804-809.
  5. Gómez Candela C, Bermejo López LM, Loria Kohen V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutr Hosp. 2011; 26(2): 323-329.
  6. Grimm MO, Zimmer VC, Lehmann J, et al. The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. Biomed Res Int.2013; 814390 : 1-16.
  7. Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer's disease. Clin Interv Aging.2010; 5: 45-61.
  8. Kiefer I, Zifko U. Alimenta tu cerebro. Ediciones Obelisco. 2011. ISBN: 978-84-9777-730-8.
  9. Marin R, Fabelo N, Martin V, et al. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases. Neurobiol. Aging. 2016: 49; 52 - 59.
  10. Marin R, Fabelo N, Fernandez-Echevarria C, et al. Lipid raft alterations in aged-associated neuropathologies. Curr. Alzheimer Res. 2016 : 13; 1 - 12.
  11. Marin R, Rojo JA, Fernandez-Echevarria C, et al. Lipid raft disarrangement as a result of neuropathological progresses: A novel strategy for early diagnosis? Neuroscience. 2013: 245; 26-39.
  1. Marin R. The neuronal membrane as a key factor in neurodegeneration. Frontiers Memb. Physiol. Biophysics. 2013 : 4, 188;1-3.
  2. Marin R. Lipid rafts play a crucial role in protein interactions and intracellular signaling involved in neuronal preservation against Alzheimer’s disease. Lipids and Cellular Membranas in Amyloid Diseases. 2011: 159 -169. ISBN: 978-3-527-32860-4.
  3. Martin V, Fabelo N, Santpere G, et al. Lipid alterations in lipid rafts from Alzheimer’s Disease human brain cortex. J. Alzheimers Dis. 2010; 19(2):489-502. 
  4. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008; 233(6): 674-688. 

Cronodisrupción - Bibliografía

Referencias: Efecto de la cronodisrupción en las enfermedades cardiovasculares.

Pablo Ariel Riccardi

  1. Anea CB, Merloiu AM, Fulton DJR, Patel V, Rudic RD.Immunohistochemistry of the circadian clock in mouse and human vascular tissues. Vessel Plus. 2018;2.
  1. Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW,Yao L, et al. Increased Superoxide and Endothelial NO Synthase Uncoupling in Blood Vessels of Bmal1-Knockout
  2. Mice. Circulation Res. 2012;111(9):1157-65.
  1. Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M.Disruption of Bmal1 Impairs Blood-Brain Barrier Integrity via Pericyte Dysfunction. J Neurosci. 2017;37(42):10052-62.
  1. Lefta,M.,Campbell,K.S.,Feng,H.Z.,Jin,J.P.,andEsser,K.A.(2012).Develop- mentofdilatedcardiomyopathyinBmal1-deficientmice. Am.J.Physiol.Heart Circ.Physiol. 303,H475–H485.doi:10.1152/ajpheart.00238.2012 
  1. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 2004; 43: 192-7.
  1. Fang J, Wheaton AG, Keenan NL, et al. Association of sleep duration and hypertension among US adults varies by age and sex. Am J Hypertens. 2012; 25(3):335–41.
  1. Guo XF, Zheng LQ, Wang J, et al. Epidemiological evidence for the link between sleep duration and high blood pressure: a systematic review and meta-analysis. Sleep Med. 2013; 14(4):324–32.
  1. Ramos AR, Jin ZZ, Rundek T, et al. Relation between long sleep and left ventricular mass (from a multiethnic elderly cohort). Am J Cardiol. 2013; 112(4):599–603.
  1. Covassin N, Bukartyk J, Sahakyan K, et al. Experimental sleep restriction increases nocturnal blood pressure and attenuates blood pressure dipping in healthy individuals. J Am Coll Cardiol. 2015; 65(10_S)
  1. Cappuccio FP, Cooper D, D’Elia L, et al. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011; 32(12):1484–92.
  1. Sands MR, Lauderdale DS, Liu K, et al. Short sleep duration is associated with carotid intima-media thickness among men in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Stroke. 2012; 43(11):2858–64

 

  1. Buxton OM, Pavlova M, Reid EW, et al. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010; 59(9):2126–33.
  1. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 2004; 43: 192-7.
  1. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, Ferrer-Hita J, Vargas M, Reiter RJ. Elevated levels of oxidized low-density lipoprotein and
  1. Ghaeli P, Vejdani S, Ariamanesh A, et al. Effect of melatonin on cardiac injury after primary percutaneous coronary intervention: a randomized controlled trial. Iran J Pharm Res 2015; 14:851–855.
  1. &Nduhirabandi F, Lamont K, Albertyn Z, et al. Role of toll-like receptor
  1. Ferracioli-Oda E, Qawasmi A, Bloch MH. Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One 2013;8:e63773
  1. Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev 2002:CD001520.
  1. Morgenthaler TI, Lee-Chiong T, Alessi C, et al. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 2007;30:1445-59
  1. Rondanelli M, Opizzi A, Monteferrario F, Antoniello N, Manni R, Klersy C. The effect of melatonin, magnesium, and zinc on primary insomnia in long-term care facility residents in Italy: a double-blind, placebo-controlled clinical trial. J Am Geriatr Soc. 2011;59(1):82–90.

Nutrición para deportes de resistencia - Bibliografía

Referencias: Nutrición para deportes de resistencia: estrategias nutricionales y uso de nutracéuticos para optimizar el rendimiento

Deilys González

1.     Antonio J, Ellerbroek A, Silver T, Orris S, Scheiner M, Gonzalez A, et al. A high protein diet (3.4 g/kg/day) combined with a heavy resistance training program improves body composition in healthy trained men and women–a follow-up investigation. J Int Soc Sports Nutr. 2015;12:39.

2.     Areta L, Burke M, Ross L, Camera M, West WD, Broad M, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591.9 (2013) pp 2319–2331

3.     Albrecht, U. ( 2017) The circadian clock, metabolism and obesity. Obesity Reviews, 18: 25– 33.

4.     Asher, G., and Sassone-Corsi, P. (2015). Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell; 161: 84-92.

5.     Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K & Rennie MJ (2010). Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92, 1080–1088.

6.     Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8.

7.     Crispim, Cibele & Carliana Mota, Maria. (2018). New perspectives on chrononutrition. Biological Rhythm Research. 50. 1-15. 10.1080/09291016.2018.1491202.

8.     Guest N, Paul C, Jason V, El Sohemy A, Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Medicine & Science in Sports & Exercise. 2018; 50(3):1570-78

9.     doi: 10.1249/MSS.0000000000001596

10.  https://journals.lww.com/acsmmsse/fulltext/2018/08000/Caffeine,_CYP1A2_Genotype,_and_Endurance.5.aspx

11.  Heikura, I., Uusitalo, A., Stellingwerff, T., Bergland, D., Mero, A., & Burke, L. Low energy availability has a major impact on bone injury rates in elite distance athletes despite being difficult to assess. International Journal of Sport Nutrition and Exercise Metabolism. 2018; 28 (4):403-411 doi: 10.1123/ijsnem.2017-0313

12.  https://journals.humankinetics.com/doi/full/10.1123/ijsnem.2017-0313

13.  Jeffrey R, Conrad PE. Dietary Manipulations Concurrent to Endurance Training. J. Funct. Morphol. Kinesiol. 2018, 3(3), 41; doi:10.3390/jfmk3030041

14.  https://www.mdpi.com/2411-5142/3/3/41/htm

15.  Jiang, P.; Turek, F.W. Timing of meals: When is as critical as what and how much. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E369–E380.

16.  Jonathan DB, John AH, James PM. Carbohydrate availability and exercise training adaptation: Too much of a good thing? European Journal of Sport Science, 2014 http://dx.doi.org/10.1080/17461391.2014.920926

17.  Maughan RJ, Burke LM, Dvorak J, et. al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018. doi: 10.1136/bjsports-2018 099027

18.  https://bjsm.bmj.com/content/early/2018/03/13/bjsports-2018-099027.info

  1. Mountjoy ML., Burke LM., Stellingwerf T., Sundgot-Borgen J. Relative Energy Deficiency in Sport: The Tip of an Iceberg. International Journal of Sport Nutrition and Exercise Metabolism. 2018; 28(4):313-315 doi: 10.1123/ijsnem.2018-0149
  2. https://journals.humankinetics.com/doi/10.1123/ijsnem.2018-0149
  1. Mountjoy ML., Sundgot-Borgen J., Burke LM. et. al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. British Journal of Sports Medicine. 2018.
  2. http://dx.doi.org/10.1136/bjsports-2018-099193
  1. Owens JD, Allison R, Close GL. Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Med. 2018. doi: 10.1007/s40279-017-0841-9
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790847/
  1. Southward, K., Rutherfurd-Markwick, K.J. & Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: a Systematic Review and Meta-Analysis Sports Med. 2018; 48: 1913.
  2. https://doi.org/10.1007/s40279-018-0939-8
  3. Samuel GI, Mark AH, et. al. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med (2018) 48:1031–1048 https://doi.org/10.1007/s40279-018-0867-7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889771/
  4. Schoenfeld et al.: The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. Journal of the Inter- national Society of Sports Nutrition 2013 10:53.

Adaptógenos - Bibliografía

Referencias: Los Adaptógenos (100% Natural)

María José Alonso

  1. European Medicines Agency. Committee on Herbal Medicinal Products. Reflection Paper on the Adaptogenic Concept. Doc. Ref. EMEA/HMPC/102655/2007
  2. Panossian A, Wikman G, Kaur P, Asea A. Adaptogens Stimulate Neuropeptide Y and Hsp72 Expression and Release in Neuroglia Cells. Frontiers in Neuroscience. 2012;6:6.
  3. EMA/HMPC/321232/2012. Assessment report on Panax ginseng C.A. Meyer, radix. 25 March 2014. Disponible on line en http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2014/05/WC500167385.pdf
  4. EMA/HMPC/680615/2013. Assessment report on Eleutherococcus senticosus (Rupr. et Maxim.) Maxim., radix. 25 March 2014. Disponible on line en http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2014/10/WC500175014.pdf
  5. EMA/HMPC/232100/2011. Assessment report on Rhodiola rosea L., rhizoma et radix. 12 July 2011. Disponible on line en: http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2011/09/WC500112675.pdf
  6. Sarris J. Herbal medicines in the treatment of psychiatric disorders: 10-year updated review. Phytother Res. 2018 Mar 25. doi: 10.1002/ptr.6055.
  7. Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med. 2012; 34 (3): 255-62. doi: 10.4103/0253-7176.106022.
  8. Choudhary D, Bhattacharyya S, Bose S. Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl. 2017;14(6):599-612.
  9. Wankhede S, Langade D, Joshi K, Sinha SR, Bhattacharyya S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial. J Int Soc Sports Nutr. 2015; 12: 43
  10. Vanaclocha y Cañigueral, Vademecum de fitoterapia. Esquisandra, monografía. Disponible en www.fitoterapia.net
  11. Hovhannisyan A, Nylander M, Wikman G, Panossian A (2015) Efficacy of Adaptogenic Supplements on Adapting to Stress: A Randomized, Controlled Trial. J Athl Enhancement 4:4

Ejercicio en el paciente oncológico - Bibliografía

Referencias: Ejercicio en el paciente oncológico

Mario Redondo

  1. 1. https://seom.org/dmcancer/wp-content/uploads/2019/Informe-SEOM-cifras-cancer-2019.pdf
  2. 2. Caspersen CJ, Christenson GM. Physical Activity , Exercise , and Physical Fitness : Definitions and Distinctions for Health-Related Research. 1985;(April).
  3. 3. Jitender S, Mahajan R, Rathore V CR. Quality of life of cancer patients. J Exp Ther Oncol. 2018;12(3):217-221.
  4. 4. Chung C, Lee S, Hwang S, Park E. Systematic Review of Exercise Effects on Health Outcomes in Women with Breast Cancer. Asian Nurs Res (Korean Soc Nurs Sci). 2013;7(3):149-159. doi:10.1016/j.anr.2013.07.005
  5. 5. Villaseñor A, Ballard-barbash R, Baumgartner K, et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors : the HEAL Study. 2012:398-406. doi:10.1007/s11764-012-0234-x
  6. 6. Winters-Stone KM, Dobek J, Nail L, et al. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: A randomized, controlled trial. Breast Cancer Res Treat. 2011;127(2):447-456. doi:10.1007/s10549-011-1444-z
  7. 7. Newton RU, Galvão DA, Spry N, Joseph D, Chambers SK, Gardiner RA, Wall BA, Bolam KA TD. Exercise Mode Specificity for Preserving Spine and Hip Bone Mineral Density in Prostate Cancer Patients. Med Sci Sport Exerc. 51(4):607-614. doi:10.1249/MSS.0000000000001831.
  8. 8. Prado CMM, Baracos VE, Mccargar LJ, et al. Cancer Therapy : Clinical Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to T umor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine T reatment. 2009;15(8):2920-2927. doi:10.1158/1078-0432.CCR-08-2242
  9. 9. Ruilope LM, Lucia A. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. doi:10.1038/s41569-018-0065-1
  10. 10. Irwin ML, Mctiernan A, Baumgartner RN, et al. Changes in Body Fat and Weight After a Breast Cancer Diagnosis : Influence of Demographic , Prognostic , and Lifestyle Factors. 2015;23(4). doi:10.1200/JCO.2005.04.036
  11. 11. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, Bianchi R, Crisci M, D’Acierno L, Giordano R, Di Palma G, Conte M, Golino P, Russo MG, Calabrò R CP. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16(9):435.
  12. 12. Patnaik JL, Byers T, Diguiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer : a retrospective cohort study. 2011. doi:10.1186/bcr2901
  13. 13. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr LA. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc. 2000;32(9):498-504.
  14. 14. Bozzetti F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann Oncol. 2017;28(9):2107-2118. doi:10.1093/annonc/mdx271
  15. 15. Shiroyama T, Nagatomo I, Koyama S, et al. Impact of sarcopenia in patients with advanced non – small cell lung cancer treated with PD-1 inhibitors : A preliminary retrospective study. 2019;(January):1-7. doi:10.1038/s41598-019-39120-6
  16. 16. Newman AB, Kupelian V, Visser M, et al. Strength , But Not Muscle Mass , Is Associated With Mortality in the Health , Aging and Body Composition Study Cohort. 2006;61(1):72-77.
  17. 17. Caan BJ, Feliciano EMC, Prado CM, et al. Association of Muscle and Adiposity Measured by Computed Tomography With Survival in Patients With Nonmetastatic Breast Cancer. 2018;94612:1-7. doi:10.1001/jamaoncol.2018.0137
  18. 18. Feliciano EMC, Kroenke CH, Meyerhardt JA, et al. Association of Systemic Inflammation and Sarcopenia With Survival in Nonmetastatic Colorectal CancerResults From the C SCANS Study. 2017;94612:1-8. doi:10.1001/jamaoncol.2017.2319
  19. 19. Wiggins JM, Opoku-acheampong AB, Baumfalk DR, Siemann DW, Behnke BJ. Exercise and the Tumor Microenvironment : Potential Therapeutic Implications. 2018. doi:10.1249/JES.0000000000000137
  20. 20. Pedersen L, Idorn M, Pedersen BK, et al. Short Article Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Short Article Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent. 2016:1-9. doi:10.1016/j.cmet.2016.01.011
  21. 21. Dethlefsen C, Hansen LS, Lillelund C, et al. Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development. 2017:1-12. doi:10.1158/0008-5472.CAN-16-3125
  22. 22. Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab. 2018;27(1):10-21. doi:10.1016/j.cmet.2017.09.015
  23. 23. Janssen IAN, Heymsfield SB, Wang ZIM, Ross R, Heymsfield SB, Wang Z. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. 2018:81-88.
  24. 24. Lee HJ, Oran B, Saliba RM, et al. Steroid myopathy in patients with acute graft-versus-host disease treated with high-dose steroid therapy. 2006;(May):299-303. doi:10.1038/sj.bmt.1705435
  25. 25. Argilés JM, Campos N, Lopez-pedrosa JM, Rueda R, Rodriguez-mañas L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk : Roles in Health and Disease. J Am Med Dir Assoc. 2016;17(9):789-796. doi:10.1016/j.jamda.2016.04.019
  26. 26. Ferrucci L, Cabo R De, Knuth ND, Studenski S. Old Body Builders. 2012;(1):13-16. doi:10.1093/gerona/glr046
  27. 27. Libardi; SNUPB. Effect of Resistance Training to Muscle Failure vs. Volitional Interruption at High- and Low-Intensities on Muscle Mass and Strength. J Strength Cond Res. 2018;32(1):162-169.
  28. 28. Morton RW, Colenso-semple L, Phillips SM. ScienceDirect Training for strength and hypertrophy : an evidence-based approach. Curr Opin Psychol. 10:90-95. doi:10.1016/j.cophys.2019.04.006
  29. 29. Schoenfeld BJ, Pope ZK, Benik FM, Hester GM, Sellers J, Nooner JL, Schnaiter JA, Bond-Williams KE, Carter AS, Ross CL, Just BL, Henselmans M KJ. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. J Strength Cond Res. 2016;30(7):1805-1812.
  30. 30. Cormie P, Pumpa K, Galvão DA, et al. Is it safe and efficacious for women with lymphedema secondary to breast cancer to lift heavy weights during exercise : a randomised controlled trial. 2013:413-424. doi:10.1007/s11764-013-0284-8
  31. 31. Cormie P, Galvão DA, Spry N, Newton RU. Neither Heavy nor Light Load Resistance Exercise Acutely Exacerbates Lymphedema in Breast Cancer Survivor. 2013. doi:10.1177/1534735413477194
  32. 32. Singh B, Disipio T, Peake J, Hayes SC. Systematic review and meta-analysis of the effects of exercise for those with cancer-related lymphedema. Arch Phys Med Rehabil. 2015. doi:10.1016/j.apmr.2015.09.012

Hiperhomocisteinemia - Bibliografía

REFERENCIAS: Hiperhomocisteinemia (Laboratorio LCN)

Mar Blanco

Kim J, Kim H, Roh H, Kwon Y. Causes of hyperhomocysteinemia and its pathological significance.

Arch Pharm Res. 2018 Apr;41(4):372-383.

Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J.. 2015. 2891-14

Iqbal NS, Wu Y, Hazen S, Tang WHW Elevated plasma homocysteine identifies patients with chronic heart failure at increased cardiovascular risk. J Card Fail. 2012. 18(8):S87

Goccer C, Genc U, Eryilmaz A, Islam A, Boynuegri S, Bakir F. Homocysteine, folate and vitamin B12 concentrations in middle aged adults presenting with sensorineural hearing impairment. Int Adv Otol 2009. 5:340–344

Laidlaw SA, Berg RL, Kopple JD, Naito H, Walker WG, Walser M Patterns of fasting plasma amino acid levels in chronic renal insufficiency: results from the feasibility phase of the modification of diet in renal disease study. Am J Kidney Dis. 1994 23:504–513

Loscalzo J The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996. 98:5–7

Plazar N, Jurdana M. Hyperhomocysteinemia and the role of B vitamins in cancer. Radiol Oncol 2010. 44:79–85.

Qujeq D, Omran TS, Hosini L (2001) Correlation between total homocysteine, low-density lipoprotein cholesterol and highdensity lipoprotein cholesterol in the serum of patients with myocardial infarction. Clin Biochem 34:97–101

Vizzardi E, Bonadei I, Zanini G, Frattini S, Fiorina C, Raddino R, Dei Cas L. Homocysteine and heart failure: an overview. Recent Pat Cardiovasc Drug Discov 2009. 4:15–21

Oncología integrativa - Bibliografía

Referencias: Oncología integrativa

Dr. Santos Martín

  1. Harguindey, S.; Henderson, E.S.; Naeher, C. Effects of systemic acidification of mice with Sarcoma 180. Cancer Res. 1979, 39, 4364–4371.
  2. Parfentjev, A.; Devrient, W.; Suntzeff, V.D.; Sokoloff, B. The Influence of Various Preparations of Lactic Acid on Transplanted Tumors: I. Action on Sarcoma 39. Cancer Res. 1932, 16, 366–376.
  3. Fenton TR, Huang T Systematic review of the association between dietary acid load, alkaline water and cancer BMJ Open 2016; 6:e 010438. doi: 10.1136/bmjopen-2015-010438
  4. Paradigm shift in cancer treatment: Cancer treatment as a metabolic disease–fusion of Eastern and Wester medicine R Hamaguchi, H Wada - Journal of Traditional Chinese Medical Sciences, 2017 - Elsevier
  5. Song, M. & Chan, A.T. Curr Colorectal Cancer Rep (2017) 13: 429. https://doi.org/10.1007/s11888-017-0389-y
  6. Y. Makino, R. Kanno, T. Ito, K. Higashino, M. Taniguchi. Predominant expression of invariant v alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol, 7 (1995), pp. 1157-1161
  7. El papel del infiltrado inflamatorio en tumores: dos caras de una misma moneda Silvina Gazzaniga. Revista QuímicaViva- Número 1, año 6, mayo 2007-
  8. Roithmaier S, Haydon AM, Loi S, et al. Incidence of malignancies in heart and/or lung transplant recipients: a single-institution experience. J Heart Lung Transplant 2007;26:845-9.
  9. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 2000;356: 1795-9.
  10. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-60.
  11. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors
  12. predict clinical outcome. Science 2006;313:1960-4.
  13. Piersma SJ, Jordanova ES, van Poelgeest MI, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes
  14. is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 2007;67:354-61.
  15. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2005;2(9):e284
  16. Sharma P, Shen Y, Wen S, et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A 2007;104:3967-72
  17. Wahlin BE, Sander B, Christensson B, Kimby E. CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 2007;13:388- 97.
  18. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu
  19. Rev Immunol 2007;25:267-96.
  20. Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets 2007;7:31-40.
  21. Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 2007;178:2883-92.
  22. Nagaraj S, Gabrilovich DI. Myeloidderived suppressor cells. Adv Exp Med Biol 2007;601:213-23.
  23. Fournie JJ, Sicard H, Poupot M et al. What lessons can be learned from gammadelta T cell‐based cancer immunotherapy trials?Cell Mol Immunol 2013; 10: 35– 41.
  24. Baker GJ, Chockley P, Yadav VNet al. Natural killer cells eradicate galectin‐1‐deficient glioma in the absence of adaptive immunity. Cancer Res 2014; 74: 5079– 5090.
  25. Wang L, Yi T, Kortylewski Met al. IL‐17 can promote tumor growth through an IL‐6‐Stat3 signaling pathway. J Exp Med 2009; 206: 1457– 1464.
  26. Eur J Cancer.2006 Apr;42(6):768-78. Epub 2006 Feb 28. Cancer CXC chemokine networks and tumour angiogenesis. Strieter RM1Burdick MDMestas JGomperts BKeane MPBelperio JA.
  27. Wong D.Y.Q. (2018) Induction of Immunogenic Cell Death by Chemotherapeutic Platinum Complexes. In: Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Singapore
  28. Metronomic chemotherapy and immunotherapy in cancer treatment . Yu-LiChenabc, Ming-ChengChangcWen-FangChengcde Cancer Letters Volume 400, 1 August 2017, Pages 282-292
  29. Kleef R., Hager E.D. (2006) Fever, Pyrogens and Cancer. In: Hyperthermia in Cancer Treatment: A Primer. Medical Intelligence Unit. Springer, Boston, MA
  30. Rybiński Mikołaj, Szymańska Zuzanna, Lasota Sławomirand Gambin Anna Modelling the efficacy of hyperthermia treatment10J. R. Soc. Interface
  31. Zhang, T., Pan, Q., Xiao, S., Li, L., & Xue, M. (2016). Docetaxel combined with intraperitoneal hyperthermic perfusion chemotherapy and hyperthermia in the treatment of advanced ovarian cancer. Oncology Letters, 11, 3287-3292. https://doi.org/10.3892/ol.2016.4414
  32. Ishikawa T. (2016) Hyperthermia Combined with Chemotherapy: Pancreatic Cancer. In: Kokura S., Yoshikawa T., Ohnishi T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore
  33. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–33
  34. Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981; 256: 8699–704.
  35. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297–308.
  36. Alberts B, Bray D, Hopkin K, Johnson A, Lewis A, Raff M, et al.Comunicación celular. En: Alberts B, Bray D, Hopkin K, JohnsonA, Lewis J, Raff M, Roberts K, Walter P, Introducción a la Biología Celular. 3th ed Madrid: Médica Panamericana; 2011.p. 533-72
  37. Possibly up to four NADPH molecules per glucose can be produced if the products of the pentose phosphate shunt are metabolized via the TCA cycle and malic enzyme or cytosolic isocitrate dehydrogenase 1 (IDH1) to generate two additional NADPH molecules
  38. Hidratos de carbono, metabolismo de la glucosa y cáncer. Endocrinología y Nutrición Vol. 53 Nr 4 pag: 252-255 (Abril 2006) J. Pérez-Guisado Departamento de Medicina. Facultad de Medicina. Universidad de Córdoba. Córdoba. España
  39. A ketogenic diet exerts beneficial effects on body composition of cancer patients during radiotherapy: An interim analysis of the KETOCOMP study Citation DataJournal of Traditional and Complementary Medicine, ISSN: 2225-4110 (2019)
  40. Weber DD, Aminazdeh-Gohari S, Kofler B. Ketogenic diet in cancer therapy. Aging (Albany NY). 2018 Feb 11;10(2):164-165. doi: 10.18632/aging.101382. PMID: 29443693; PMCID: PMC5842847.
  41. Fasting and Caloric Restriction in Cancer Pre vention and Treatment. Brandhorst S1Longo VD2,3. Recent Results Cancer Res.2016;207:241-66. doi: 10.1007/978-3-319-42118-6_12.
  42. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1 Kathryn E. Hamilton, Janelle F. Rekman, Leesha K. Gunnink, Brianna M. Busscher, Jordan L. Scott, Andrew M. Tidball, Nathan R. Stehouwer, Grace N. Johnecheck, Brendan D. Looyenga, Larry L. Louters Biochimie. 2018 Aug; 151: 107–114. Published online 2018 May 29. doi: 10.1016/j.biochi.2018.05.012 PMCID: PMC6035882
  43. Repurposing metformin for the prevention of cancer and cancer recurrence Heckman-Stoddard, B.M., DeCensi, A., Sahasrabuddhe, V.V. et al. Diabetologia (2017) 60: 1639. https://doi.org/10.1007/s00125-017-4372-6
  44. C. Coyle, F. H. Cafferty, C. Vale, R. E. Langley, Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis, Annals of Oncology, Volume 27, Issue 12, December 2016, Pages 2184–2195, https://doi.org/10.1093/annonc/mdw410
  45. Liu Q, Yuan W, Tong D, et al. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget. 2016;7(19):28235–28246. doi:10.18632/oncotarget.8595
  46. Wang X, Chen K, Yu Y, et al. Metformin sensitizes lung cancer cells to treatment by the tyrosine kinase inhibitor erlotinib. Oncotarget. 2017;8(65):109068–109078. Published 2017 Nov 21. doi:10.18632/oncotarget.22596
  47. Potential applications for biguanides in oncology Michael Pollak Published September 3, 2013 J Clin Invest. 2013;123(9):3693-3700. https://doi.org/10.1172/JCI67232
  48. AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Antonio F.Santidrián, Diana M. González-Gironès, Daniel Iglesias-Serret, Llorenç Coll-Mulet, Ana M. Cosialls, Mercè de Frias, Clara Campàs, Eva González-Barca, Esther Alonso, Verena Labi, Benoit Viollet, Adalberto Benito, Gabriel Pons, Andreas Villunger, Joan Gil Blood Oct 2010, 116 (16) 3023-3032; DOI: 10.1182/blood-2010-05-283960
  49. Vaupel, P. & Mayer, A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv. Exp. Med. Biol. 812, 19–24 (2014).
  50. S. Harguindey, Use of Na+/H+ antiporter inhibitors as a novel approach tocancer treatment, in: Amiloride and Its Analogs: Unique Cation TransportInhibitors, VCH Publishers Inc., New York, 1992, pp. 317–334.
  51. S. Harguindey, J.L. Pedraz, R. García Ca˜nero, J. Pérez de Diego, E.J. Cragoe Jr.,Hydrogen ion-dependent oncogenesis and parallel new avenues to cancerprevention and treatment using a H(+)-mediated unifying approach:pH-related and pH-unrelated mechanisms, Crit. Rev. Oncog. 6 (1) (1995) 1–33
  52. M.A. McBrian, I.S. Behbahan, R. Ferrari, et al., Histone acetylation regulatesintracellular pH, Mol. Cell 49 (2) (2013) 310–321, http://dx.doi.org/10.1016/j.molcel.2012.10.025.
  53. T. Song, H.-K. Jeon, J.E. Hong, et al., Proton pump inhibition enhances the cytotoxicity of paclitaxel in cervical cancer, Cancer Res. Treat. (2016)
  54. Syrosingopine sensitizes cancer cells to killing by metformin Don Benjamin, Marco Colombi, Sravanth K. Hindupur, Charles Betz, Heidi A. Lane, Mahmoud Y. M. El-Shemerly Min Lu, Luca Quagliata, Luigi Terracciano, Suzette Moes, Timothy Sharpe, Aleksandra Wodnar-Filipowicz, Christoph Moroni, Michael N. Hall December 2016 in Science Advances
  1. H. Song, M. Fares, K.R. Maguire, A. Siden, Cytotoxic effects of tetracyclineanalogs (doxycycline, minocycline and col-3) in acute myeloid leukemiaHL-60 cells, PLoS One (2014),
  2. Zhang J, Sun X, Wang L, et al. Artesunate-induced mitophagy alters cellular redox status. Redox Biol. 2018;19:263–273. doi:10.1016/j.redox.2018.07.025
  3. T. Kloskowski, N. Gurtowska, J. Olkowska, J.M. Nowak, J. Adamowicz, J.Tworkiewicz, et al., Ciprofloxacin is a potential topoisomerase II inhibitor forthe treatment of NSCLC, Int. J. Oncol. 41 (6) (2012) 1943–1949, http://dx.doi.org/10.3892/ijo.2012.1653.
  4. Artesunate Induces Cell Death in Human Cancer Cells via Enhancing Lysosomal Function and Lysosomal Degradation of Ferritin* Nai-Di Yang1Shi-Hao Tan,§1Shukie NgYin Shi1Jing ZhouKevin Shyong Wei TanWai-Shiu Fred Wong and Han-Ming Shen doi: 10.1074/jbc.M114.564567November 28, 2014The Journal of Biological Chemistry289, 33425-33441
  1. Glasauer, N.S. Chandel, Targeting antioxidants for cancer therapy, Biochem.Pharmacol. 92 (1) (2014) 90–101.
  1. A.R. Mendelsohn, J.W. Larrick, Paradoxical effects of antioxidants on cancer, Rejuvenation Res. 17 (3) (2014) 306–311.
  2. G. Galati, O. Sabzevari, J.X. Wilson, P.J. O’Brien, Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics, Toxicology 177 (1) (2002) 91–104.
  3. Plant flavone apigenin: An emerging anticancer agent. Shankar E, Goel A, Gupta K, Gupta S. Curr Pharmacol Rep. 2017 Dec; 3(6):423-446. Epub 2017 Oct 14.
  4. G. Galati, A. Lin, A.M. Sultan, P.J. O’Brien, Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins, Free Radic. Biol. Med. 40 (4) (2006) 570–580.
  5. Daruwalla J, Christophi C (2006) Hyperbaric oxygen therapy for malignancy: a review. World J Surg 30:2112–2131
  6. Kawasoe Y, Yokouchi M, Ueno Y, Iwaya H, Yoshida H, Komiya S (2009) Hyperbaric oxygen as a chemotherapy adjuvant in the
  7. treatment of osteosarcoma. Oncol Rep 22:1045–1050
  8. Kerbel RS, Kamen BA. The anti‑angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004;4:423‑36.
  9. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4 (+) 25+T regulatory cell function
  10. implicated in enhanced immune response by low‑dose cyclophosphamide. Blood 2005;105:2862‑8
  11. Bahl A, Bakhshi S. Metronomic chemotherapy in progressive pediatric malignancies: Old drugs in new package. Indian J Pediatr 2012;79:1617‑22
  12. San-Millán, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133.
  13. Luc, R.; Tortorella, S.M.; Ververis, K.; Karagiannis, T.C. Lactate as an insidious metabolite due to the Warburg effect. Mol. Biol. Rep. 2015, 42, 835–840

Tejido adiposo - Bibliografía

Referencias: Tejido adiposo

Dra. Miren Morillas

  1. Smith J, Al-Amri M, Dorairaj P, Sniderman A. The adipocyte life cycle hypothesis. Clin Sci 2006;110:1-9.
  2. Reyes M. Características biológicas del tejido adiposo: el adipocito como célula endocrina. Rev Med Clin Condes 2012;23: 136-44.
  3. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115-24.
  4. Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006;74:443-77.
  5. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000;43:1498-506.
  6. Danforth E, Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000;26:13.
  7. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011;12:722-34.
  8. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes 2004;28 (Suppl 4):S12-21.
  9. Kloting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010;299:E506-15.
  10. Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans 2008;36:935-40.
  11. Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 2007;3:e64.

Cromo - Bibliografía

Referencias: Cromo

Dra. Cristina Zemba

  • Hua Y, Clark S, Ren J y col. Molecular mechanisms of crhomium in alleviating insulin resistance. J Nutr Biochem 23: 313- 319, 2012
  • MuoioDM, y Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9: 193- 205, 2008
  • Saltiel AR, y Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 424: 799- 806, 2001
  • Petersen MC y Shulman GI. Mechanism of insulin action and insulin resistance. Phsysiol Rev 98: 2133- 2223, 2018
  • Wang H, Kruszewski A y Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry 44: 8167- 75, 2005
  • Chen G, Liu P, Pattar GR y col. Chromium activates glucose transporter 4 trafficking and enchances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a colesterol-dependent mechanism. Mol Endocrinol 20: 857- 70, 2006
  • Jain SK, Patel P y Rogier K. Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antiox Redox Signal 8: 238-41, 2006
  • Onakpoya I, Posadzki P y Ernst E. Crhomium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trial. Obes Rev 14: 496- 507, 2013
  • Anton SD, Morrison CD, Cefalu WT y col. Effects of chromium picolinate on food intake and saciety. Diabetes Technol Ther 10: 405- 12, 2008

Cromo. Linus Pauling Institute. Centro de información de Micronutrientes. Oregon State University https://lpi.oregonstate.edu/es/mic/minerales/cromo

  • López Muñoz E, López Colman E y López Blanco L. El efecto del cromo en el síndrome metabólico. Trabajo de fin de grado. Facultad de Farmacia, Universidad Complutense. Febrero 2016
  • Broadhurst CL y Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus- a review. Diabetes Technol Ther 8: 677- 87, 2006

 

Los beneficios de la espirulina azul en la salud. Referencias bibliográficas

Los beneficios de la espirulina azul (Arthrospira platensis) en la salud

Colaboración de Evolutionary Health.

REFERENCIAS:

1. Kulshreshtha A, Zacharia AJ, Jarouliya U, Bhadauriya P, Prasad GB, Bisen PS. Spirulina in health care management. Curr Pharm Biotechnol. 2008;9(5):400-405.18855693
2. Ciferri O. Spirulina, the edible microorganism. Microbiol Rev. 1983;47(4):551-578.6420655
3. Ciferri O, Tiboni O. The biochemistry and industrial potential of Spirulina. Annu Rev Microbiol. 1985;39:503-526.3933408
4. Dillon JC, Phuc AP, Dubacq JP. Nutritional value of the alga Spirulina. World Rev Nutr Diet. 1995;77:32-46.7732699
5. Robb-Nicholson C. By the way, doctor. I read that spirulina is the next wonder vitamin. What can you tell me about it?Harv Womens Health Watch. 2006;14(3):8.
6. Godia F, Albiol J, Montesinos JL, et al. MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol. 2002;99(3):319-330.12385718
7. Khan Z, Bhadouria P, Bisen PS. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol. 2005;6(5):373-379.16248810
8. Lumsden J, Hall DO. Soluble & membrane-bound superoxide dismutases in a blue-green algae (Spirulina) and spinach. Biochem Biophys Res Commun. 1974;58(1):35-41.4364622
9. Mitchell GV, Grundel E, Jenkins M, Blakely SR. Effects of graded dietary levels of Spirulina maxima on vitamins A and E in male rats. J Nutr. 1990;120(10):1235-1240.2213251
10. Wang J, Wang Y, Wang Z, et al. Vitamin A equivalence of spirulina beta-carotene in Chinese adults as assessed by using a stable-isotope reference method. Am J Clin Nutr. 2008;87(6):1730-1737.18541562
11. Kapoor R, Mehta U. Utilization of beta-carotene from Spirulina platensis by rats. Plant Foods Hum Nutr. 1993;43(1):1-7.
12. Maranesi M, Barzanti V, Carenini G, Gentili P. Nutritional studies on Spirulina maxima. Acta Vitaminol Enzymol. 1984;6(4):295-304.6442827
13. Patil G, Chethana S, Madhusudhan MC, Raghavarao KS. Fractionation and purification of the phycobiliproteins fromSpirulina platensis. Bioresour Technol. 2008;99(15):7393-7396.18295479
14. Yoshikawa N, Belay A. Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina (Arthrospira) supplements and raw materials by spectrophotometry. J AOAC Int. 2008;91(3):524-529.18567296
15. Otles S, Pire R. Fatty acid composition of chlorella and spirulina microalgae species. J AOAC Int. 2001;84(6):1708-1714.11767135
16. Herrero M, Vicente MJ, Cifuentes A, Ibáñez E. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract. Rapid Commun Mass Spectrom. 2007;21(11):1729-1738.17487827
17. Kapoor R, Mehta U. Iron status and growth of rats fed different dietary iron sources. Plant Foods Hum Nutr. 1993;44(1):29-34.
18. Kapoor R, Mehta U. Effect of supplementation of blue green algae (Spirulina) on outcome of pregnancy in rats. Plant Foods Hum Nutr. 1993;43(1):29-35.
19. Johnson PE, Shubert LE. Availability of iron to rats from Spirulina, a blue-green alga. Nutr Res. 1986;6(1):85.
20. Hayashi T, Hayashi K, Maeda M, Kojima I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga, Spirulina platensis. J Nat Prod. 1996;59(1):83-87.
21. Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med. 2008 Sep 14 [Epub ahead of print].18955364
22. Labhe RU, Mani UV, Iyer UM, Mishra M, Jani K, Bhattacharya A. The effect of spirulina in the treatment of bronchial asthma. J Nutraceutical Functional Med Foods. 2001;3(pt 4):53-62.
23. Mao TK, Van de Water J, Gershwin ME. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food. 2005;8(1):27-30.15857205
24. Cingi C, Conk-Dalay M, Cakli H, Bal C. The effects of spirulina on allergic rhinitis. Eur Arch Otorhinolaryngol. 2008;265(10):1219-1223.18343939
25. Teas J, Hebert JR, Fitton JH, Zimba PV. Algae—a poor man's HAART?Med Hypotheses. 2004;62(4):507-510.15050097
26. Hernández-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res. 2002;56(3):279-285.12406511
27. Shih SR, Tsai KN, Li YS, Chueh CC, Chan EC. Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J Med Virol. 2003;70(1):119-125.12629652
28. Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res. 2004;18(9):754-757.15478198
29. El-Sheekh MM, Mahmoud YA, Abo-Shady AM, Hamza W. Efficacy of Rhodotorula glutinis and Spirulina platensiscarotenoids in immunopotentiation of mice infected with Candida albicans SC5314 and Pseudomonas aeruginosa 35. Folia Microbiol (Praha). 2010;55(1):61-67.20336506
30. Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68(3):453-462.15242812
31. Li B, Gao MH, Zhang XC, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem. 2006;43(pt 3):155-164.
32. Li B, Zhang X, Gao M, Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed Pharmacother. 2005;59(10):551-560.16271846
33. Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P. Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem. 2007;47(pt 3):159-167.17274761
34. Oh SH, Ahn J, Kang DH, Lee HY. The Effect of ultrasonificated extracts of Spirulina maxima on the anticancer activity. Mar Biotechnol (NY). 2011;13(2):205-214.20405153
35. Chen T, Wong YS, Zheng W. Induction of G1 cell cycle arrest and mitochondria-mediated apoptosis in MCF-7 human breast carcinoma cells by selenium-enriched Spirulina extract. Biomed Pharmacother. 2009 Oct 27 [Epub ahead of print].19926246
36. Schwartz J, Shklar G. Regression of experimental hamster cancer by beta carotene and algae extracts. J Oral Maxillofac Surg. 1987;45(6):510-515.3108474
37. Schwartz J, Shklar G, Reid S, Trickler D. Prevention of experimental oral cancer by extracts of Spirulina-Dunaliella algae. Nutr Cancer. 1988;11(2):127-134.
38. Shklar G, Schwartz J. Tumor necrosis factor in experimental cancer regression with alphatocopherol, beta-carotene, canthaxanthin and algae extract. Eur J Cancer Clin Oncol. 1988;24(5):839-850.
39. Akao Y, Ebihara T, Masuda H, et al. Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci. 2009;100(8):1494-1501.19432881
40. Grawish ME. Effects of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7,12-dimethylbenz[a]anthracene. Oral Oncol. 2008;44(10):956-962.18262461
41. Grawish ME, Zaher AR, Gaafar AI, Nasif WA. Long-term effect of Spirulina platensis extract on DMBA-induced hamster buccal pouch carcinogenesis (immunohistochemical study). Med Oncol. 2010;27(1):20-28.19156551
42. Ismail MF, Ali DA, Fernando A, et al. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina. Int J Biol Sci. 2009;5(4):377-387.19521547
43. Mathew B, Sankaranarayanan R, Nair PP, et al. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer. 1995;24(2):197-202.8584455
44. Muthuraman P, Senthilkumar R, Srikumar K. Alterations in beta-islets of Langerhans in alloxan-induced diabetic rats by marine Spirulina platensis. J Enzyme Inhib Med Chem. 2009;24(6):1253-1256.19912059
45. Mani UV, Desai S, Iyer I. Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceutical Funct Med Foods. 2000;2(3):25-32.
46. Parikh P, Mani U, Iyer U. Role of spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. J Med Food. 2001;4(4):193-199.12639401
47. ACSH News & Views. 1982;3(3):3.
48. FDA Consumer. 1981;15:3.
49. Voltarelli FA, de Mello MA. Spirulina enhanced the skeletal muscle protein in growing rats. Eur J Nutr. 2008;47(7):393-400.18807105
50. Simpore J, Kabore F, Zongo F, et al. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr J. 2006;5:3.
51. Simpore J, Zongo F, Kabore F, et al. Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing spirulina. Ann Nutr Metab. 2005;49(6):373-380.16219988
52. Park HJ, Lee YJ, Ryu HK, Kim MH, Chung HW, Kim WY. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab. 2008;52(4):322-328.18714150
53. Kalafati M, Jamurtas AZ, Nikolaidis MG, et al. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc. 2010;42(1):142-151.20010119
54. Nagaoka S, Shimizu K, Kaneko H, et al. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr. 2005;135(10):2425-2430.16177207
55. Cheong SH, Kim MY, Sok DE, et al. Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo). 2010;56(1):34-40.20354344
56. Khanam A, Rashid H. Effect of spirulina on lipid profile in patients with glomerulonephritis. Bangladesh Renal J. 2001;20:8-13.
57. Samuels R, Mani UV, Iyer UM, Nayak US. Hypocholesterolemic effect of spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food. 2002;5(2):91-96.12487756
58. Lee EH, Park JE, Choi YJ, Huh KB, Kim WY. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr Res Pract. 2008;2(4):295-300.20016733
59. Juárez-Oropeza MA, Mascher D, Torres-Durán PV, Farias JM, Paredes-Carbajal MC. Effects of dietary Spirulina on vascular reactivity. J Med Food. 2009;12(1):15-20.19298191
60. Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids Health Dis. 2007;6:33.18039384
61. Rasool M, Sabina EP. Appraisal of immunomodulatory potential of Spirulina fusiformis: an in vivo and in vitro study. J Nat Med. 2009;63(2):169-175.19093070
62. Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomen flos-aquae and Chlorella pyrenoidosa. Planta Med. 2001;67(8):737-742.11731916
63. Balachandran P, Pugh ND, Ma G, Pasco DS. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int Immunopharmacol. 2006;6(12):1808-1814.17052671
64. Mao TK, Van de Water J, Gershwin ME. Effect of spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J Med Food. 2000;3(3):135-140.19281334
65. Hayashi O, Katayanagi Y, Ishii K, Kato T. Flow cytometric analysis of age-related changes in intestine intraepithelial lymphocyte subsets and their functional preservation after feeding mice on spirulina. J Med Food. 2009;12(5):982-989.19857060
66. Nielsen CH, Balachandran P, Christensen O, et al. Enhancement of natural killer cell activity in healthy subjects by Immulina, a Spirulina extract enriched for Braun-type lipoproteins. Planta Med. 2010;76(16):1802-1808.20560112
67. Selmi C, Leung PS, Fischer L, et al. The effects of Spirulina on anemia and immune function in senior citizens. Cell Mol Immunol. 2011;8(3);248-254.21278762
68. Torres-Durán PV, Miranda-Zamora R, Paredes-Carbajal MC, Mascher D, Díaz-Zagoya JC, Juárez-Oropeza MA. Spirulina maxima prevents induction of fatty liver by carbon tetrachloride in the rat. Biochem Mol Biol Int. 1998;44(4):787-793.9584992
69. Ferreira-Hermosillo A, Torres-Duran PV, Juarez-Oropeza MA. Hepatoprotective effects of Spirulina maxima in patients with non-alcoholic fatty liver disease: a case series. J Med Case Reports. 2010;4(1):103.20370930
70. Karadeniz A, Cemek M, Simsek N. The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicol Environ Saf. 2009;72(1):231-235.18395256
71. Sharma MK, Sharma A, Kumar A, Kumar M. Spirulina fusiformis provides protection against mercuric chloride induced oxidative stress in Swiss albino mice. Food Chem Toxicol. 2007;45(12):2412-2419.17706852
72. Ponce-Canchihuamán JC, Pérez-Méndez O, Hernández-Muñoz R, Torres-Durán PV, Juárez-Oropeza MA. Protective effects of Spirulina maxima on hyperlipidemia and oxidative-stress induced by lead acetate in the liver and kidney. Lipids Health Dis. 2010;9:35.20353607
73. Bermejo-Bescós P, Piñero-Estrada E, Villar del Fresno AM. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol In Vitro. 2008;22(6):1496-1502.18572379
74. Lu J, Ren DF, Wang JZ, Sanada H, Egashira Y. Protection by dietary Spirulina platensis against D-galactosamine–and acetaminophen-induced liver injuries. Br J Nutr. 2010;103(11):1573-1576.20102673
75. Viswanadha VP, Sivan S, Rajendra Shenoi R. Protective effect of Spirulina against 4-nitroquinoline-1-oxide induced toxicity. Mol Biol Rep. 2011;38(1):309-317.20352348
76. Mohan IK, Khan M, Shobha JC, et al. Protection against cisplatin-induced nephrotoxicity by Spirulina in rats. Cancer Chemother Pharmacol. 2006;58(6):802-808.16552571
77. Karadeniz A, Yildirim A, Simsek N, Kalkan Y, Celebi F. Spirulina platensis protects against gentamicin-induced nephrotoxicity in rats. Phytother Res. 2008;22(11):1506-1510.18690652
78. Paniagua-Castro N, Escalona-Cardoso G, Hernández-Navarro D, Pérez-Pastén R, Chamorro-Cevallos G. Spirulina (Arthrospira) protects against cadmium-induced teratogenic damage in mice. J Med Food. 2011;14(4):398-404.21254891
79. Chamorro-Cevallos G, Garduño-Siciliano L, Barrón BL, Madrigal-Bujaidar E, Cruz-Vega DE, Pages N. Chemoprotective effect of Spirulina (Arthrospira) against cyclophosphamide-induced mutagenicity in mice. Food Chem Toxicol. 2008;46(2):567-574.17928122
80. Misbahuddin M, Islam AZ, Khandker S, Ifthaker-Al-Mahmud, Islam N, Anjumanara. Efficacy of spirulina extract plus zinc in patients of chronic arsenic poisoning: a randomized placebo-controlled study. Clin Toxicol (Phila). 2006;44(2):135-141.16615668
81. Chen T, Wong YS. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J Agric Food Chem. 2008;56(12):4352-4358.18522403
82. Dartsch PC. Antioxidant potential of selected Spirulina platensis preparations. Phytother Res. 2008;22(5):627-633.18398928
83. García-Martínez D, Rupérez FJ, Ugarte P, Barbas C. Tocopherol fate in plasma and liver of streptozotocin-treated rats that orally received antioxidants and Spirulina extracts. Int J Vitam Nutr Res. 2007;77(4):263-271.18271281
84. Gad AS, Khadrawy YA, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition. 2011;27(5):582-589.20708378
85. Riss J, Décordé K, Sutra T, et al. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem. 2007;55(19):7962-7967.17696484
86. Kim MY, Cheong SH, Lee JH, Kim MJ, Sok DE, Kim MR. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet. J Med Food. 2010;13(2):420-426.20210608
87. Wu LC, Ho JA, Shieh MC, Lu IW. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem. 2005;53(10):4207-4212.15884862
88. Deng R, Chow TJ. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther. 2010;28(4):e33-e45.20633020
89. McCarty MF. Clinical potential of Spirulina as a source of phycocyanobilin. J Med Food. 2007;10(4):566-570.18158824
90. Shyam R, Singh SN, Vats P, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. J Altern Complement Med. 2007;13(8):789-791.17983333
91. Hsiao G, Chou PH, Shen MY, Chou DS, Lin CH, Sheu JR. C-phycocyanin, a very potent and novel platelet aggregation inhibitor from Spirulina platensis. J Agric Food Chem. 2005;53(20):7734-7740.16190625
92. Remirez D, González R, Merino N, Rodriguez S, Ancheta O. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediators Inflamm. 2002;11(2):75-79.
93. Rasool M, Sabina EP, Lavanya B. Anti-inflammatory effect of Spirulina fusiformis on adjuvant-induced arthritis in mice. Biol Pharm Bull. 2006;29(12):2483-2487.17142986
94. Kumar N, Singh S, Patro N, Patro I. Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats. Inflammopharmacology. 2009;17(3):181-190.19390977
95. Gupta S, Hrishikeshvan HJ, Sehajpal PK. Spirulina protects against rosiglitazone induced osteoporosis in insulin resistance rats. Diabetes Res Clin Pract. 2010;87(1):38-43.19896232
96. Bachstetter AD, Jernberg J, Schlunk A, et al. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One. 2010;5(5):e10496.20463965
97. ALSUntangled Group. ALSUntangled No. 9: Blue-green algae (Spirulina) as a treatment for ALS. Amyotroph Lateral Scler. 2011;12(2):153-155.21323493
98. Baicus C, Baicus A. Spirulina did not ameliorate idiopathic chronic fatigue in four N-of-1 randomized controlled trials. Phytother Res. 2007;21(6):570-573.17335116
99. Thaakur S, Sravanthi R. Neuroprotective effect of Spirulina in cerebral ischemia-reperfusion injury in rats. J Neural Transm. 2010;117(9):1083-1091.20700612
100. Yang L, Wang Y, Zhou Q, et al. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization. Mol Vis. 2009;15:1951-1961.19784394
101. Lu HK, Hsieh CC, Hsu JJ, Yang YK, Chou HN. Preventive effects of Spirulina platensis skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol. 2006;98(2):220-226.16944194
102. Qishen P, Guo BJ, Kolman A. Radioprotective effect of extract from Spirulina platensis in mouse bone marrow cells studied by using the micronucleus test. Toxicol Lett. 1989;48(2):165-169.2505406
103. Klingler W, Kreja L, Nothdurft W, Selig C. Influence of different radioprotective compounds on radiotolerance and cell cycle distribution of human progenitor cells of granulocytopoiesis in vitro. Br J Haematol. 2002;119(1):244-254.12358931
104. Kraigher O, Wohl Y, Gat A, Brenner S. A mixed immunoblistering disorder exhibiting features of bullous pemphigoid and pemphigus foliaceus associated with Spirulina algae intake. Int J Dermatol. 2008;47(1):61-63.18173606
105. Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES. Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis ). Phytomedicine. 2008;15(6-7):525-527.18434120
106. Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adachi Y. Spirulina-associated hepatotoxicity. Am J Gastroenterol. 2002;97(12):3212-3213.12492223
107. Rawn DF, Niedzwiadek B, Lau BP, Saker M. Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal. J Food Prot. 2007;70(3):776-779.17388076
108. Jiang Y, Xie P, Chen J, Liang G. Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(7):885-894.18569007
109. Wu JF, Pond WG. Amino acid composition and microbial contamination of Spirulina maxima, a blue-green alga, grown on the effluent of fermented animal wastes. Bull Environ Contam Toxicol. 1981;27(2):151-159.6794684
110. Lee AN, Werth VP. Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch Dermatol. 2004;140(6):723-727.15210464
111. Grobler L, Siegfried N, Visser ME, Mahlungulu SSN, Volmink J. Nutritional interventions for reducing morbidity and mortality in people with HIV. Cochrane Database Syst Rev. 2013;2:CD004536.2345055410.1002/14651858.CD004536.pub3
112. Torres-Durán PV, Ferreira-Hermosillo A, Ramos-Jiménez A, Hernández-Torres RP, Juárez-Oropeza MA. Effect of Spirulina maxima on postprandial lipemia in young runners: a preliminary report. J Med Food. 2012;15(8):753-757.22738038
113. Jensen GS, Attridge VL, Beaman JL, Guthrie J, Ehmann A, Benson KF. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction. J Med Food. 2015;18(5):535-541.25764268
114. Serban MC, Sahebkar A, Dragan S, et al. A systematic review and meta-analysis of the impact of spirulina supplementation on plasma lipid concentrations. Clin Nutr. 2016;35(4):842-851.
115. Szulinska M, Gibas-Dorna M, Miller-Kasprzak E, et al. Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: a randomized double-blind placebo-controlled study. Eur Rev Med Pharmacol Sci. 2017;21:2473-2481.28617537

Aplicando Ciencia a tus Entrenamientos - Bibliografía

Aplicando ciencia a tus entrenamientos para reducir tu riesgo cardio-metabólico

Francisco Carreño

 

REFERENCIAS:

  1. Batacan RB Jr et al. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017 Mar;51(6):494-503.
  2. Di Blasio A et al. Acute and delayed effects of high intensity interval resistance training organization on cortisol and testosterone production. J Sports Med Phys Fitness. 2016 Mar;56(3):192-9.
  3. Drigny J et al. Long-term high-intensity interval training associated with lifestyle modifications improves QT dispersion parameters in metabolic syndrome patients. Ann Phys Rehabil Med. 2013 Jul;56(5):356-70.
  4. Emberts, T et al. Exercise Intensity and Energy Expenditure of a Tabata Workout. Journal of Sports Science and Medicine (2013) 12, 612-613  
  5. exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 307: E539–E552, 2014.
  6. Fisher G et al. High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial. PLoS One. 2015 Oct 21;10(10):e0138853
  7. Gibala MJ et al. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012 Mar 1;590(5):1077-84.
  8. Hazell TJ et al. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite. 2016 Mar 1;98:80-8.
  9. Kong Z et al. Comparison of High-Intensity Interval Training and Moderate-to-Vigorous Continuous Training for Cardiometabolic Health and Exercise Enjoyment in Obese Young Women: A Randomized Controlled Trial. PLoS One. 2016 Jul 1;11(7):e0158589.
  10. Larsen PS et al. Effects of Aerobic, Strength or Combined Exercise on Perceived Appetite and Appetite-Related Hormones in Inactive Middle-Aged Men. Int J Sport Nutr Exerc Metab. 2017 Oct;27(5):389-398.
  11. Mangiamarchi P et al. [Effects of high-intensity interval training and nutritional education in patients with type 2 diabetes]. Rev Med Chil. 2017 Jul;145(7):845-853.
  12. Marcelino-Rodríguez I et al. Inverse association of resistin with physical activity in the general population. PLoS One. 2017 Aug 3;12(8):e0182493.
  13. Martins C et al. High-Intensity Interval Training and Isocaloric Moderate-Intensity Continuous Training Result in Similar Improvements in Body Composition and Fitness in Obese Individuals. Int J Sport Nutr Exerc Metab. 2016 Jun;26(3):197-204.
  14. Mitranun W et al. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014 Apr;24(2):e69-76.
  15. Nilsson BB et al. Long-Term Results of High-Intensity Exercise-Based Cardiac Rehabilitation in Revascularized Patients for Symptomatic Coronary Artery Disease. Am J Cardiol. 2018 Jan 1;121(1):21-26.
  16. Ouerghi N et al. Effect of High-Intensity Interval Training on Plasma Omentin-1 Concentration in Overweight/Obese and Normal-Weight Youth. Obes Facts. 2017;10(4):323-331.
  17. Peake JM et al. Metabolic and hormonal responses to isoenergetic high-intensity interval
  18. Ramos JS et al. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015 May;45(5):679-92.
  19. Sabag A et al. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. J Sports Sci. 2018 Apr 16:1-12.
  20. Sellami M et al. Combined sprint and resistance training abrogates age differences in somatotropic hormones. PLoS One. 2017 Aug 11;12(8):e0183184.
  21. Sim AY et al. Effects of High-Intensity Intermittent Exercise Training on Appetite Regulation. Med Sci Sports Exerc. 2015 Nov;47(11):2441-9.
  22. Smith-Ryan AE et al. High-intensity interval training: Modulating interval duration in overweight/obese men. Phys Sportsmed. 2015 May;43(2):107-13.
  23. Stavrinou PS et al.High-intensity Interval Training Frequency: Cardiometabolic Effects and Quality of Life. Int J Sports Med. 2018 Feb;39(3):210-217.
  24. Stephen H. Boutcher. High-Intensity Intermittent Exercise and Fat Loss. Journal of Obesity. Volume 2011, Article ID 868305
  25. Støa EM et al. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur J Appl Physiol. 2017 Mar;117(3):455-467.
  26. Tabata I et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996 Oct;28(10):1327-30.
  27. Talanian JL et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985). 2007 Apr;102(4):1439-47.
  28. Viana RB et al. Tabata protocol: a review of its application, variations and outcomes. Clin Physiol Funct Imaging. 2018 Apr 2.
  29. Weston KS et al. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014 Aug;48(16):1227-34.
  30. Williams BM, Kraemer RR. Comparison of Cardiorespiratory and Metabolic Responses in Kettlebell High-Intensity Interval Training Versus Sprint Interval Cycling. J Strength Cond Res. 2015 Dec;29(12):3317-25.

La Medicina Genómica - Bibliografía

La Medicina Genómica y sus aportes en el diagnóstico y el manejo de los trastornos del neurodesarrollo

José Ignacio Lao

 

REFERENCIAS:

  1. 1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5). Washington, DC: American Psychiatric Association; 2013.
  1. 2. Machado JD, Caye A, Frick PJ, Rhode LA. DSM-5. Major chnages for child and adolescent disorders. In Rey JM ed. IACAPAP e-Textbook of Child and Adolescent Mental Health. Geneva: International Association for Child and Adolescent Psychiatry and Allied Professions; 2013
  1. 3. The Centers for Disease Control and Prevention. CDC estimates 1 in 68 children has been identified with autism spectrum disorder. Atlanta (GA): The Centers for Disease Control and Prevention; c2014 [cited 2015 Nov 29]. Available from: http://www.cdc.gov/media/releases/2014/p0327-autism-spectrum-disorder.html.
  1. 4. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014 Apr;43(2):443-64. doi: 10.1093/ije/dyt282. Epub 2014 Feb 11.
  1. 5. Tran NQV, Miyake K. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int J Genomics. 2017;2017:7526592. doi: 10.1155/2017/7526592. Epub 2017 May 8.
  1. 6. Plummer JT, Gordon AJ, Levitt P. The Genetic Intersection of Neurodevelopmental Disorders and Shared Medical Comorbidities – Relations that Translate from Bench to Bedside. Frontiers in Psychiatry. 2016;7:142. doi:10.3389/fpsyt.2016.00142.
  1. 7. Lao Villadóniga JI. Diagnosis and genetic counseling in mental retardation. Rev Neurol. 2001 Oct;33 PMID: 12447810.
  1. 8. Veenstra-Vanderweele J. Genetic testing in neurodevelopmental disorders. J Am Acad Child Adolesc Psychiatry. 2013 May;52(5):449-50. doi: 10.1016/j.jaac.2013.02.011.
  1. 9. Christa Lese Martin, David H. Ledbetter. Chromosomal Microarray Testing for Children With Unexplained Neurodevelopmental Disorders JAMA. 2017;317(24):2545–2546. doi:10.1001/jama.2017.7272 June 27, 2017
  1. 10. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–764.
  1. 11. Van Loo KM., Martens GJ. Genetic and Environmental Factors in Complex Neurodevelopmental Disorders. Current Genomics. 2007;8(7):429-444. doi:10.2174/138920207783591717.
  1. 12. Lewis EMA, Kroll KL. Development and disease in a dish: the epigenetics of neurodevelopmental disorders. Epigenomics 2018 10:2, 219-231.
  1. 13. Lao JI. Autism Spectrum Disorders: An Intervention Approach Based on Genomic Analysis. Biol Med J., 2014, S1. http://dx.doi.org/10.4172/0974-8369.S1-002.
  1. 14. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. International Journal of Epidemiology, 43(2), 443-464.
  1. 15. Monk C, Georgieff MK, Osterholm EA. Research review: maternal prenatal distress and poor nutrition―mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry 2013;54:115-30.
  1. 16. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015;145:1109S-15.
  1. 17. De Felice A, Ricceri L, Venerosi A, et al. Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. Toxics 2015, 3, 89-129; doi:10.3390/toxics3010089.
  1. 18. Sasmita, Andrew Octavian; Kuruvilla, Joshua; Ling, Anna Pick Kiong (2018-05-04). "Harnessing neuroplasticity: modern approaches and clinical future". The International Journal of Neuroscience: 1–17.
  1. 19. Alarcón M, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008 Jan;82(1):150-9. doi: 10.1016/j.ajhg.2007.09.005.

20.Campbell DB et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16834-9. Epub 2006 Oct 19.

  1. 21. Arking DE, et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 2008 Jan;82(1):160-4. doi: 10.1016/j.ajhg.2007.09.015.
  1. 22. Tan GC, Doke TF, Ashburner J, Wood NW, Frackowiak RS. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. Neuroimage. 2010 Nov 15;53(3):1030-42. doi: 10.1016/j.neuroimage.2010.02.018. Epub 2010 Feb 20.
  1. 23. Rodenas-Cuadrado P, Ho J2, Vernes SC.Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet. 2014 Feb;22(2):171-8. doi: 10.1038/ejhg.2013.100. Epub 2013 May 29
  1. 24. Jackson PB, et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2009 Aug;2(4):232-6. doi: 10.1002/aur.87.
  1. 25. Thanseem I, et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res. 2010 Oct;68(2):137-41. doi: 10.1016/j.neures.2010.06.014. Epub 2010 Jul 6.
  1. 26. Shaw P, Lerch JP, Pruessner JC, Taylor KN, Rose AB, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol. 2007 Jun;6(6):494-500
  1. 27. Filippini N, Macintosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14.
  1. 28. Wright RO, Hu H, Silverman EK, et al. Apolipoprotein E genotype predicts 24-month Bayley Scales of Infant Development score. Pediatr Res. 2003;54(6):819–825.
  1. 29. Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, LaDu MJ, Weeber EJ, Turner RS, Xu B, Rebeck GW, Hoe HS. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009 Dec 2;29(48):15317-22.
  1. 30. Eto M, Watanabe K, Chonan N, Ishii K. Familial hipercolesterolemia and apolipoprotein E4. 1988. Atherosclerosis 72: 123-128.
  1. 31. Hixson JE. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Apolipoprotein E polymorphisms affect atherosclerosis in young males. 1991. Arterioscler Thromb 11: 1237–1244.
  1. 32. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nature reviews Neurology. 2013;9(2):106-118. doi:10.1038/nrneurol.2012.263.
  1. 33. Godfrey ME, Wojcik DP, Krone CA. Apoplipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimer Dis. 2003; 5:189-195.
  1. 34. Ng S, Lin CC, Hwang YH, Hsieh WS, Liao HF, Chen PC. Mercury, APOE, and children's neurodevelopment. Neurotoxicology. 2013 Jul;37:85-92. doi: 10.1016/j.neuro.2013.03.012. Epub 2013 Apr 18.
  1. 35. Sankalp Gokhale & Daniel T Laskowitz (2013) ApoE and outcome after traumatic brain injury, Clinical Lipidology, 8:5, 561-571
  1. 36. Giunco, CT., et al. Association between APOE polymorphisms and predisposition for autism. Psychiatric Genetics: December 2009 - Volume 19 - Issue 6 - p 338.
  1. 37. Acevedo S, Piper B, Craytor M, Benice T, and Raber J. Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatr Res. 2010 March; 67(3): 293–299.
  1. 38. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D'Angelo G, Liu C, Dixit S, Benzinger T, Fagan A, Goate A, Mintun MA. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci. 2010 Dec 15;30(50):17035-40.
  1. 39. Kuroda MMM, Weck ME, Sarwark JF, Hamidullah A, Wainwright MS. Association of apolipoprotein E genotype and cerebral palsy in children. Pediatrics. 2007; 119(2):306–313.
  1. 40. Kuroda MMM, Weck ME, Sarwark JF, Hamidullah A, Wainwright MS. Association of apolipoprotein E genotype and cerebral palsy in children. Pediatrics. 2007; 119(2):306–313.
  1. 41. Persico AM, et al. Enhanced APOE2 transmission rates in families with autistic probands. Psychiatr Genet. 2004 Jun;14(2):73-82.
  1. 42. Hövels-Gürich HH, Konrad K, Skorzenski D, Herpertz-Dahlmann B, Messmer BJ, Seghaye M-C. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg. 2007;83(4):1425–1430.
  1. 43. Watson GE, Evans K, Thurston SW, van Wijngaarden E, et al. Prenatal exposure to dental amalgam in the Seychelles Child Development Nutrition Study: associations with neurodevelopmental outcomes at 9 and 30 months. Neurotoxicology. 2012 Dec;33(6):1511-7. doi: 10.1016/j.neuro.2012.10.001. Epub 2012 Oct 12.
  1. 44. Ying Chena, Murat S. Durakoglugila, Xunde Xiana, Joachim Herza. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. PNAS June 29, 2010 vol. 107 no. 26 12011-12016. doi: 10.1073/pnas.0914984107.
  1. 45. Connors SL, et al. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotictwins. J Child Neurol. 2005 Nov;20(11):876-84.
  1. 46. Roman T, et al. Further evidence of the involvement of alpha-2A-adrenergic receptor gene (ADRA2A) in inattentive dimensional scores of attention-deficit/hyperactivity disorder. Mol Psychiat 2005, 10.1038/sj.mp.4001743.
  1. 47. Cheslack-Postava K, Fallin MD, Avramopoulos D, Connors SL, Zimmerman AW, Eberhart CG, Newschaffer CJ. beta2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort.. Mol Psychiatry. 2007 Mar;12(3):283-91. Epub 2007 Jan 2.
  1. 48. Croen LA, et al. Prenatal exposure to β2-adrenergic receptor agonists and risk of autism spectrum disorders. J Neurodev Disord. 2011 Dec;3(4):307-15. Epub 2011 Aug 27.
  1. 49. Ananth Narayanan, et al. Effect of Propranolol on Functional Connectivity in Autism Spectrum Disorder—A Pilot Study. Brain Imaging and Behavior (2010) 4:189–197.
  1. 50. Hartley L. et al. The Effect of Beta Adrenergic Blocking Drugs on Speakers Perfomance and Memory. British Journal of Psychiatry. 142.
  1. 51. Witter FR, Zimmerman AW, Reichmann JP, Connors SL. In utero beta 2 adrenergic agonist exposure and adverse neurophysiologic and behavioral outcomes. Am J Obstet Gynecol. 2009 Dec;201(6):553-9.
  1. 52. Suppiej A, Franzoi M, Gentilomo C, Battistella PA, Drigo P, Gavasso S, Laverda AM, Simioni P. High prevalence of inherited thrombophilia in 'presumed peri-neonatal' ischemic stroke. Eur J Haematol. 2008 Jan;80(1):71-5. Epub 2007 Nov 19.
  1. 53. Ballantyne AO, Spilkin AM, Hesselink J, Trauner DA. Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain. 2008;131:2975–2985.
  1. 54. Stella CL, et al. Fetal thrombophilia, perinatal stroke, and novel ideas about CP. OBG Management 2008; 20(10): 26
  1. 55. Herak DC, Antolic MR, Krleza JL, et al. Inherited prothrombotic risk factors in children with stroke, transient ischemic attack, or migraine. Pediatrics. 2009;123:e653–e660.
  1. 56. Ricci D, Mercuri E, Barnett A, et al. Cognitive outcome at early school age in term-born children with perinatally acquired middle cerebral artery territory infarction. Stroke. 2008; 39:403–410.
  1. 57. Bauer, K.A. Prothrombin G20210A mutation. In T.W. Post, P. Rutgeerts, & S. Grover (Eds.), 2018, UptoDate. Available from https://www.uptodate.com/contents/prothrombin-g20210a-mutation?
  1. 58. Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD, Collins R, et al. (2006). "Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls". Lancet. 367 (9511): 651–8.
  1. 59. Harum KH, Hoon AH, Casella JF. Factor V Leiden: a risk factor for cerebral palsy. Dev Med Child Neurol 1999; 41: 7815.
  1. 60. Halliday JL, Reddihough D, Byron K, Ekert H, Ditchfield M. Hemiplegic cerebral palsy and the factor V Leiden mutation. J Med Genet 2000; 37: 7879.
  1. 61. Lynch JK, Nelson KB, Curry CJ, Grether JK. Cerebrovascular disorders in children with the factor V Leiden mutation. J Child Neurol 2001; 16: 73544.
  1. 62. Neggers Y. The Relationship between Folic Acid and Risk of Autism Spectrum Disorders. Samman S, Darnton-Hill I, eds. Healthcare. 2014;2(4):429-444. doi:10.3390/healthcare2040429.
  1. 63. Gao Y, Sheng C, Xie R, et al. New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children – A Systematic Review. Rosenfeld CS, ed. PLoS ONE. 2016;11(11):e0165626. doi:10.1371/journal.pone.0165626.
  1. 64. Schmidt, Rebecca & Lasalle, Janine. (2010). Interactions between Folate, Other B Vitamins, DNA Methylation, and Neurodevelopmental Disorders. 317-361. 10.1201/b10449-14.
  1. 65. Allis CD, Jenuwein T, Reinberg D, Caparros M, editors. Epigenetics. New York: Cold Spring

Harbour Laboratory Press; 2007.

  1. 66. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38(1):23-38. doi:10.1038/npp.2012.112.
  1. 67. Ye et al. A Metabolic Function for Phospholipid and Histone Methylation, 2017, Molecular Cell 66, 180–193.
  1. 68. Choi, Junhong; Ieong, Ka-Weng; Demirci, Hasan; Chen, Jin; Petrov, Alexey; Prabhakar, Arjun; O'Leary, Seán E.; Dominissini, Dan; Rechavi, Gideon. "N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics". Nature Structural & Molecular Biology, 2016. 23 (2): 110–115
  1. 69. Pearce K, Cai D, Roberts AC, Glanzman DL. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Ramaswami M, ed. eLife. 2017;6:e18299. doi:10.7554/eLife.18299.
  1. 70. Miller AL. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev. 2008 Sep;13(3):216-26.
  1. 71. Pfeiffer L, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015 Apr;8(2):334-42. doi: 10.1161/CIRCGENETICS.114.000804. Epub 2015 Jan 12.
  1. 72. Ulrich CM, Toriola AT, Koepl LM, et al. Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women. Epigenetics. 2012;7(9):1020-1028. doi:10.4161/epi.21464.
  1. 73. Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011 Jul;22(4):476-85.
  1. 74. Schmidt RJ, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr. 2012 Jul;96(1):80-9. Epub 2012 May 30.
  1. 75. Schmidt RJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology (Cambridge, Mass). 2011; 22(4):476-485. doi:10.1097/EDE.0b013e31821d0e30.
  1. 76. del Rio Garcia C, Torres-Sanchez L, Chen J, et al. Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci. 2009; 12:13-20.
  1. 77. Schlotz W, Jones A, Phillips DI, et al. Lower maternal folate status in early pregnancy is associated with childhood hyper-activity and peer problems in offspring. J Child Psychol Psy-chiatry. 2010; 51-5: 594-602.
  1. 78. Boris M, Goldblatt A, Galanko J. et al. Association of MTHFR Gene Variants with Autism. Journal of American Physicians and Surgeons. 2004;9:106-8
  1. 79. Krull KR, Brouwers P, Jain N. et al. Folate Pathway Genetic Polymorphisms are Related to Attention Disorders in Childhood Leukemia Survivors. J Pediatr. 2008;152(1):101-5
  1. 80. Cem Gokcen , Nadir Kocak, Ahmet Pekgor.Methylenetetrahydrofolate Reductase Gene Polymorphisms in Children with Attention Deficit Hyperactivity Disorder. Int J Med Sci 2011; 8(7):523-528. doi:10.7150/ijms.8.523.
  1. 81. Young SN, Shalchi M. The effect of methionine and S-adenosylmethionine on S-adenosylmethionine levels in the rat brain. Journal of Psychiatry and Neuroscience. 2005;30(1):44-48.
  1. 82. Christensen KE, et al. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum Mutat. 2009 Feb;30(2):212-20. doi: 10.1002/humu.20830.
  1. 83. Jiang J, Zhang Y, Wei L, Sun Z, Liu Z.Association between MTHFD1 G1958A polymorphism and neural tube defects susceptibility: a meta-analysis. PLoS One. 2014 Jun 30;9(6):e101169. doi: 10.1371/journal.pone.0101169. eCollection 2014.
  1. 84. Tunbridge E. M., Harrison P. J. Importance of the COMT gene for sex differences in brain function and predisposition to psychiatric disorders. Current Topics in Behavioral Neurosciences. 2011;8:119–140. doi: 10.1007/7854_2010_97.
  1. 85. De Castro-Catala M, Barrantes-Vidal N, Sheinbaum T, Moreno-Fortuny A, Kwapil TR, Rosa A. COMT-by-Sex Interaction Effect on Psychosis Proneness. BioMed Research International. 2015;2015:829237. doi:10.1155/2015/829237.
  1. 86. Gepshtein S, Li X, Snider J, Plank M, Lee D, Poizner H. Dopamine Function and the Efficiency of Human Movement. Journal of cognitive neuroscience. 2014;26(3):645-657. doi:10.1162/jocn_a_00503.
  1. 87. Wallace DL, Aarts E, Uquillas F d’Oleire, et al. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of “unhealthy” foods. Appetite. 2015;92:74-80. doi:10.1016/j.appet.2015.05.004.
  1. 88. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry. 2002; 159:652–654. doi: 10.1176/appi.ajp.159.4.652.
  1. 89. Bishop Sonia J y cols. COMT genotype influences prefrontal response to emotional distraction. Cognitive, Affective, & Behavioral Neuroscience 2006, 6(1): 62-70.
  1. 90. Bishop SJ, Fossella J, Croucher CJ, Duncan J. COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cereb Cortex 2008, 18:2132--2140.
  1. 91. de Frias CM y cols. Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task. J Cogn Neurosci. 2009, 22:1614--1622.
  1. 92. Qian Q, Wang Y, Zhou R, Li J, Wang B, Glatt S, Faraone SV. Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet. 2003; 118B:103–109. doi: 10.1002/ajmg.b.10064.
  1. 93. Thapar A., Langley K., Fowler T., Rice F., Turic D., Whittinger N., et al. (2005). Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry 62, 1275-1278.
  1. 94. Halleland H. y cols. Association Between Catechol O-methyltransferase (COMT) Haplotypes and Severity of Hyperactivity Symptoms in Adults. Am J Med Genet 2009, Part B 150B:403–410.
  1. 95. Pálmason H., Moser D., Sigmund J., Vogler C., Hänig S., Schneider A., et al. (2010). Attention-deficit/hyperactivity disorder phenotype is influenced by a functional catechol-O-methyltransferase variant. Journal of Neural Transmission, 117,259-67.
  1. 96. Nijmeijer J.S. y cols. Perinatal Risk Factors Interacting With Catechol O-Methyltransferase and the Serotonin Transporter Gene Predict ASD Symptoms in Children With ADHD. J Child Psychology and Psychiatry and Allied Disciplines, 51, 1242-1250, 2010.
  1. 97. Kereszturi E, Tarnok Z, Bognar E, Lakatos K, Farkas L, Gadoros J, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1431–5.
  1. 98. A. Salatino-Oliveira y cols. Catechol-O-Methyltransferase Valine158Methionine Polymorphism Moderates Methylphenidate Effects on Oppositional Symptoms in Boys with Attention-Deficit/Hyperactivity DisorderBiol Psychiatry 2011;70:216–221.
  1. 99. Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ. Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology (Berl). 2001;154(1):105-11.
  1. 100. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry. 2003 Oct;160(10):1887-9.
  1. 101. Hamidovic A, et al. Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatric Genetics 2010, 20:85–92.
  1. 102. Zhang Y. et al.Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20552-7. Epub 2007 Dec 11.
  1. 103. Laucht M, et al. Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry. 2008 Jun;47(6):673-81. doi: 10.1097/CHI.0b013e31816bff77.
  1. 104. Luykx JJ, Broersen JL, de Leeuw M. The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017 Mar;74(Pt A):214-224. doi: 10.1016/j.neubiorev.2017.01.006. Epub 2017 Jan 16.
  1. 105. Voisey J et al. The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety. 2009;26(1):28-33. doi: 10.1002/da.20517.
  1. 106. Cho AR, Lee SM, Kang WS, Kim SK, Chung J-H. Assessment between Dopamine Receptor D2 (DRD2) Polymorphisms and Schizophrenia in Korean Population. Clinical Psychopharmacology and Neuroscience. 2012;10(2):88-93. doi:10.9758/cpn.2012.10.2.88.
  1. 107. Ouellet-Morin I, et al. Association of the dopamine transporter gene and ADHD symptoms in a Canadian population-based sample of same-age twins. Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1442-9. doi: 10.1002/ajmg.b.30677.
  1. 108. Hamilton PJ, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013 Dec;18(12):1315-23. doi: 10.1038/mp.2013.102. Epub 2013 Aug 27.
  1. 109. Pinsonneault JK, Papp AC, Sadée W. Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet. 2006 Sep 1;15(17):2636-49. Epub 2006 Aug 7.
  1. 110. Cohen IL, et al. Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet. 2003 Sep;64(3):190-7.
  1. 111. Kisková J, Gabriková D. The Role of MAOA Gene in the Etiology of Autism Spectrum Disorder in Males. International Scholarly and Scientific Research & Innovation 9(2) 2015.
  1. 112. Clemens B, et al. Effect of MAOA Genotype on Resting-State Networks in Healthy Participants, Cerebral Cortex, Volume 25, Issue 7, 1 July 2015, Pages 1771–1781,
  1. 113. Brunner HG; Nelen MR; van Zandvoort P; Abeling NGGM; van Gennip AH; Wolters EC; Kuiper MA; Ropers HH; van Oost BA (June 1993). "X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism". Am. J. Hum. Genet. 52 (6): 1032–9.
  1. 114. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (October 1993). "Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A". Science. 262 (5133): 578–80.
  1. 115. Gutiérrez B, et al. Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatr Genet. 2004 Dec;14(4):203-8.
  1. 116. Tadic A, et al. Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. Am J Med Genet B Neuropsychiatr Genet. 2003 Feb; 117B(1):1-6.
  1. 117. Tafet GE, et al. Correlation between cortisol level and serotonin uptake in patients with chronic stress and depression. Cogn Affect Behav Neurosci. 2001 Dec;1(4):388-93.
  1. 118. Fogel WA, Lewinski A, Jochem J. Histamine in food: is there anything to worry about? Biochemical Society Transactions (2007) Volume 35, part 2.
  1. 119. Liu B, Liu J, Wang M, Zhang Y, Li L. From Serotonin to Neuroplasticity: Evolvement of Theories for Major Depressive Disorder. Frontiers in Cellular Neuroscience. 2017;11:305. doi:10.3389/fncel.2017.00305.
  1. 120. Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience. 2016;321:24-41. doi:10.1016/j.neuroscience.2015.11.010.
  1. 121. Veenstra-VanderWeele J, Muller CL, Iwamoto H, et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(14):5469-5474. doi:10.1073/pnas.1112345109.
  1. 122. Wendland JR, et al. Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Molecular Psychiatry (2006) 11, 224–226. doi:10.1038/sj.mp.4001789; published online 10 January 2006.
  1. 123. Grabe HJ, et al. Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry. 2009 Aug;166(8):926-33. doi: 10.1176/appi.ajp.2009.08101542. Epub 2009 Jun 1.
  1. 124. Gadow KD, et al. Allele-specific associations of 5-HTTLPR/rs25531 with ADHD and autism spectrum disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry 40 (2013) 292–297.
  1. 125. Francès F, Portolés O, Castelló A, Costa JA, Verdú F.Association between Opioid Receptor mu 1 (OPRM1) Gene Polymorphisms and Tobacco and Alcohol Consumption in a Spanish Population. Bosn J Basic Med Sci. 2015 Apr 25;15(2):31-6. doi: 10.17305/bjbms.2015.243.
  1. 126. Becker JA, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL. Autistic-Like Syndrome in Mu Opioid Receptor Null Mice is Relieved by Facilitated mGluR4 Activity. Neuropsychopharmacology. 2014;39(9):2049-2060. doi:10.1038/npp.2014.59.
  1. 127. Chamorro AJ, et al. Association of µ-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: a systematic review and meta-analysis. Addict Biol. 2012 May;17(3):505-12. doi: 10.1111/j.1369-1600.2012.00442.x.
  1. 128. Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 1990;12:319–26.
  1. 129. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 1999;134:33–41.
  1. 130. Jacobson JL, Jacobson SW. Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr 2003;143:780–8.  
  1. 131. Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R et al. In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school–age children. J Epidemiol 2005;162:17–26.
  1. 132. Orito K, Gotanda N, Murakami M, Ikeda T, Egashira N et al. Prenatal exposure to 3,3',4,4',5–pentachlorobiphenyl (PCB126) promotes anxiogenic behavior in rats. Tohoku J Exp Med 2007;212:151–7.
  1. 133. Chiu YH, et al. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ Int. 2016 Feb;87:56-65. doi: 10.1016/j.envint.2015.11.010. Epub 2015 Nov 28.
  1. 134. Tran NQV, Miyake K. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. International Journal of Genomics. 2017;2017:7526592. doi:10.1155/2017/7526592.
  1. 135. Gribble MO, Karimi R, Feingold BJ, et al. Mercury, selenium and fish oils in marine food webs and implications for human health. J Mar Biol Assoc U.K. 2016 Feb;96(1):43-59. Epub 2015 Sep 8.
  1. 136. Altaf Alabdali, Laila Al-Ayadhi and Afaf El-Ansary. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behavioral and Brain Functions2014, 10:14. DOI: 10.1186/1744-9081-10-14
  1. 137. Grant DM. Detoxification pathways in the liver. J Inherit Metab Dis. 1991;14(4):421-30.
  1. 138. Hsieh CJ1, Jeng SF, Wu KY, Su YN, Liao HF, Hsieh WS, Chen PC. GSTM1 modifies the effect of maternal exposure to environmental tobacco smoke on neonatal primitive reflexes. Nicotine Tob Res. 2011 Nov;13(11):1114-22. doi: 10.1093/ntr/ntr124. Epub 2011 Aug 17.
  1. 139. Steven Buyske et al. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genetics 2006, 7:8 doi:10.1186/1471-2156-7-8.
  1. 140. Buyske S. y cols. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genetics 2006, 7:8.
  1. 141. Morales E, Sunyer J, Julvez J, Et Al. GSTM1 polymorphisms modify the effect of maternal smoking during pregnancy on cognitive functioning in preschoolers. International Journal of Epidemiology 2009;38:690–697. doi:10.1093/ije/dyp141.
  1. 142. Paintlia, M. K., Paintlia, A. S., Contreras, M. A., Singh, I. & Singh, A. K. (2008). Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: Attenuation by N-acetyl cysteine. Experimental Neurology, 210(2), 560-76.
  1. 143. Hsieh CJ, Liao HF, Wu KY, Hsieh WS, Su YN, Jeng SF, Yu SN, Chen PC. CYP1A1 Ile462Val and GSTT1 modify the effect of cord blood cotinine on neurodevelopment at 2 years of age. Neurotoxicology. 2008 Sep;29(5):839-45. doi: 10.1016/j.neuro.2008.05.006. Epub 2008 Jun 3.
  1. 144. Delpisheh A, Brabin L, Topping J, Reyad M, Tang AW, Brabin BJ.A case-control study of CYP1A1, GSTT1 and GSTM1 gene polymorphisms, pregnancy smoking and fetal growth restriction. Eur J Obstet Gynecol Reprod Biol. 2009 Mar;143(1):38-42. doi: 10.1016/j.ejogrb.2008.11.006. Epub 2009 Jan 14.
  1. 145. Ighodaro O.M., Akinloye O.A.. irst line defence antioxidants-superoxide dismutase (SOD), catalase(CAT) and glutathione peroxidase (GPX): Their fundamental role in theentire antioxidant defence grid. Alex J Med (2017), https://doi.or g/10.1016/j.ajme.2017.09.001.
  1. 146. Robin Bernhoft, Rashid Buttar. Autism: A Multi-System Oxidative and Inflammatory Disorder. Townsend Letter, April, 2008, pp 86-90.
  1. 147. Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ (2003). Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112: e420–e424.
  1. 148. Romero, R., Gotsch, F., Pineles, B. & Kusanovic, J. P. (2007). Inflammation in pregnancy: Its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutrition Reviews, 65(12 Pt. 2), S194-202.
  1. 149. Sorokin Y, Romero R, Mele L, Wapner RJ, Et al. Maternal serum interleukin-6, C-reactive protein, and matrix metalloproteinase-9 concentrations as risk factors for preterm birth <32 weeks and adverse neonatal outcomes. Am J Perinatol. 2010 Sep;27(8):631-40. doi: 10.1055/s-0030-1249366.
  1. 150. Ryan M. McAdams and Sandra E. Juul, “The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury,” Neurology Research International, vol. 2012, Article ID 561494, 15 pages, 2012. doi:10.1155/2012/561494.
  1. 151. Kim Y, Kim L, Lee MS.Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res. 2000 Sep 1;44(3):165-75.
  1. 152. Jyonouchi H. Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev Clin Immunol. 2010 May;6(3):397-411. doi: 10.1586/eci.10.18.
  1. 153. Jyonouchi H, Geng L, Cushing-Ruby A, Quraishi H. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study. J Neuroinflammation. 2008 Nov 21; 5:52. Epub 2008 Nov 21
  1. 154. Croonenberghs J, et al. Activation of the inflammatory response system in autism. Neuropsychobiology. 2002;45(1):1-6.
  1. 155. Cawthorpe D. Comprehensive Description of Comorbidity for Autism Spectrum Disorder in a General Population. The Permanente Journal. 2017;21:16-088. doi:10.7812/TPP/16-088.
  1. 156. Bauman ML. Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 2010;7:320–7.
  1. 157. Buie T, Campbell DB, Fuchs GJ 3rd, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010;125suppl 1:S1–18.
  1. 158. Ajamian M, Kosofsky BE, Wormser GP, Rajadhyaksha AM, Alaedini A. Serologic Markers of Lyme Disease in Children with Autism. JAMA : the journal of the American Medical Association. 2013;309(17):1771-1773. doi:10.1001/jama.2013.618.

Christopher J McDougle and William A Carlezon. Neuroinflammation and Autism: Toward Mechanisms and Treatments. Neuropsychopharmacology Reviews (2013) 38, 241–242; doi:10.1038/npp.2012.174

  1. 159. Meguid NA, et al. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J Altern Complement Med 2010, 16:641-645.
  1. 160. Levenson CW, Figueirôa SM: Gestational vitamin D deficiency. long-term effects on the brain. Nutr Rev 2008, 66:726-729.
  1. 161. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34: 47–64. doi: 10.1016/j.yfrne.2012.07.001.
  1. 162. Cannell JJ: Autism and vitamin D. Med Hypotheses 2008, 70:750-759.
  1. 163. Kočovská E, et al. Vitamin D and autism: clinical review. Res Dev Disabil 2012, 33:1541-1550.

Medicina del Estrés - Bibliografía

Medicina del estrés: aumento de la resiliencia fisiológica y de la reserva metabólica como mecanismos de prevención de las enfermedades crónicas

Paula Martín Marfil

 

REFERENCIAS:

1. Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response.

Annu Rev Physiol. 2005;67:259-84. Review. PubMed PMID: 15709959.

  1. 2. Selye H. A syndrome produced by diverse nocuous agents. 1936. J

Neuropsychiatry Clin Neurosci. 1998 Spring;10(2):230-1. PubMed PMID: 9722327.

3. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993 Sep 27;153(18):2093-101. Review. PubMed PMID:8379800.

  1. 4. McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load.

Ann N Y Acad Sci. 1998 May 1;840:33-44. Review. PubMed PMID: 9629234.

5. Ames BN. Low micronutrient intake may accelerate the degenerative diseases of

aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci US A. 2006 Nov 21;103(47):17589-94. Epub 2006 Nov 13. Review. PubMed PMID:17101959; PubMed Central PMCID: PMC1693790.

6. Kyrou I, Tsigos C. Stress hormones: physiological stress and regulation ofmetabolism. Curr Opin Pharmacol. 2009 Dec;9(6):787-93. doi:10.1016/j.coph.2009.08.007. Epub 2009 Sep 14. Review. PubMed PMID: 19758844.7. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system:

modulation of behavioral state and state-dependent cognitive processes. Brain Res

Brain Res Rev. 2003 Apr;42(1):33-84. Review. PubMed PMID: 12668290.

8. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010 Sep;35(1):2-16.doi: 10.1016/j.neubiorev.2009.10.002. Epub 2009 Oct 12. Review. PubMed PMID:19822172.

  1. 9. Remor, E. (2006). Psychometric properties of a European Spanish version of the Perceived Stress Scale (PSS). The Spanish journal of psychology, 9(01), 86-93.

10. Long SJ, Benton D. Effects of vitamin and mineral supplementation on stress,mild psychiatric symptoms, and mood in nonclinical samples: a meta-analysis.Psychosom Med. 2013 Feb;75(2):144-53. doi: 10.1097/PSY.0b013e31827d5fbd. Epub 2013 Jan 29. PubMed PMID: 23362497.11. Savineau JP, Marthan R, Dumas de la Roque E. Role of DHEA in cardiovascular diseases. Biochem Pharmacol. 2013 Mar 15;85(6):718-26. doi:10.1016/j.bcp.2012.12.004. Epub 2012 Dec 25. Review. PubMed PMID: 23270992.12. Hellhammer J, Vogt D, Franz N, Freitas U, Rutenberg D. A soy-based

phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitary-adrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study. Lipids Health Dis.2014 Jul 31;13:121. doi: 10.1186/1476-511X-13-121. PubMed PMID: 25081826; PubMed Central PMCID: PMC4237891.

  1. 13. Panossian A, Wikman G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr Clin Pharmacol. 2009 Sep;4(3):198-219. Epub 2009 Sep 1. Review. PubMed PMID: 19500070.

14. Kirsch DL, Nichols F. Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia. Psychiatr Clin North Am. 2013 Mar;36(1):169-76. doi: 10.1016/j.psc.2013.01.006. Review. PubMed PMID: 23538086.15. Brody S, Preut R, Schommer K, Schürmeyer TH. A randomized controlled trial of

high dose ascorbic acid for reduction of blood pressure, cortisol, and subjective

responses to psychological stress. Psychopharmacology (Berl). 2002

Jan;159(3):319-24. Epub 2001 Nov 20. PubMed PMID: 11862365.

16. Held K, Antonijevic IA, Künzel H, Uhr M, Wetter TC, Golly IC, Steiger A, Murck H. Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry. 2002 Jul;35(4):135-43. PubMed PMID:12163983.17. Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F, Luci M, Ceresini G, Dall'Aglio E, Caffarra P, Valenti G, Ceda GP. DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol. 2015 Jan;145:281-92. doi:10.1016/j.jsbmb.2014.03.014. Epub 2014 May 2. Review. PubMed PMID: 24794824.