Skip to main content

La Medicina Genómica - Bibliografía

La Medicina Genómica y sus aportes en el diagnóstico y el manejo de los trastornos del neurodesarrollo

José Ignacio Lao

 

REFERENCIAS:

  1. 1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5). Washington, DC: American Psychiatric Association; 2013.
  1. 2. Machado JD, Caye A, Frick PJ, Rhode LA. DSM-5. Major chnages for child and adolescent disorders. In Rey JM ed. IACAPAP e-Textbook of Child and Adolescent Mental Health. Geneva: International Association for Child and Adolescent Psychiatry and Allied Professions; 2013
  1. 3. The Centers for Disease Control and Prevention. CDC estimates 1 in 68 children has been identified with autism spectrum disorder. Atlanta (GA): The Centers for Disease Control and Prevention; c2014 [cited 2015 Nov 29]. Available from: http://www.cdc.gov/media/releases/2014/p0327-autism-spectrum-disorder.html.
  1. 4. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014 Apr;43(2):443-64. doi: 10.1093/ije/dyt282. Epub 2014 Feb 11.
  1. 5. Tran NQV, Miyake K. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int J Genomics. 2017;2017:7526592. doi: 10.1155/2017/7526592. Epub 2017 May 8.
  1. 6. Plummer JT, Gordon AJ, Levitt P. The Genetic Intersection of Neurodevelopmental Disorders and Shared Medical Comorbidities – Relations that Translate from Bench to Bedside. Frontiers in Psychiatry. 2016;7:142. doi:10.3389/fpsyt.2016.00142.
  1. 7. Lao Villadóniga JI. Diagnosis and genetic counseling in mental retardation. Rev Neurol. 2001 Oct;33 PMID: 12447810.
  1. 8. Veenstra-Vanderweele J. Genetic testing in neurodevelopmental disorders. J Am Acad Child Adolesc Psychiatry. 2013 May;52(5):449-50. doi: 10.1016/j.jaac.2013.02.011.
  1. 9. Christa Lese Martin, David H. Ledbetter. Chromosomal Microarray Testing for Children With Unexplained Neurodevelopmental Disorders JAMA. 2017;317(24):2545–2546. doi:10.1001/jama.2017.7272 June 27, 2017
  1. 10. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–764.
  1. 11. Van Loo KM., Martens GJ. Genetic and Environmental Factors in Complex Neurodevelopmental Disorders. Current Genomics. 2007;8(7):429-444. doi:10.2174/138920207783591717.
  1. 12. Lewis EMA, Kroll KL. Development and disease in a dish: the epigenetics of neurodevelopmental disorders. Epigenomics 2018 10:2, 219-231.
  1. 13. Lao JI. Autism Spectrum Disorders: An Intervention Approach Based on Genomic Analysis. Biol Med J., 2014, S1. http://dx.doi.org/10.4172/0974-8369.S1-002.
  1. 14. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. International Journal of Epidemiology, 43(2), 443-464.
  1. 15. Monk C, Georgieff MK, Osterholm EA. Research review: maternal prenatal distress and poor nutrition―mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry 2013;54:115-30.
  1. 16. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015;145:1109S-15.
  1. 17. De Felice A, Ricceri L, Venerosi A, et al. Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. Toxics 2015, 3, 89-129; doi:10.3390/toxics3010089.
  1. 18. Sasmita, Andrew Octavian; Kuruvilla, Joshua; Ling, Anna Pick Kiong (2018-05-04). "Harnessing neuroplasticity: modern approaches and clinical future". The International Journal of Neuroscience: 1–17.
  1. 19. Alarcón M, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008 Jan;82(1):150-9. doi: 10.1016/j.ajhg.2007.09.005.

20.Campbell DB et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16834-9. Epub 2006 Oct 19.

  1. 21. Arking DE, et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 2008 Jan;82(1):160-4. doi: 10.1016/j.ajhg.2007.09.015.
  1. 22. Tan GC, Doke TF, Ashburner J, Wood NW, Frackowiak RS. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. Neuroimage. 2010 Nov 15;53(3):1030-42. doi: 10.1016/j.neuroimage.2010.02.018. Epub 2010 Feb 20.
  1. 23. Rodenas-Cuadrado P, Ho J2, Vernes SC.Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet. 2014 Feb;22(2):171-8. doi: 10.1038/ejhg.2013.100. Epub 2013 May 29
  1. 24. Jackson PB, et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2009 Aug;2(4):232-6. doi: 10.1002/aur.87.
  1. 25. Thanseem I, et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res. 2010 Oct;68(2):137-41. doi: 10.1016/j.neures.2010.06.014. Epub 2010 Jul 6.
  1. 26. Shaw P, Lerch JP, Pruessner JC, Taylor KN, Rose AB, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol. 2007 Jun;6(6):494-500
  1. 27. Filippini N, Macintosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14.
  1. 28. Wright RO, Hu H, Silverman EK, et al. Apolipoprotein E genotype predicts 24-month Bayley Scales of Infant Development score. Pediatr Res. 2003;54(6):819–825.
  1. 29. Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, LaDu MJ, Weeber EJ, Turner RS, Xu B, Rebeck GW, Hoe HS. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009 Dec 2;29(48):15317-22.
  1. 30. Eto M, Watanabe K, Chonan N, Ishii K. Familial hipercolesterolemia and apolipoprotein E4. 1988. Atherosclerosis 72: 123-128.
  1. 31. Hixson JE. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Apolipoprotein E polymorphisms affect atherosclerosis in young males. 1991. Arterioscler Thromb 11: 1237–1244.
  1. 32. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nature reviews Neurology. 2013;9(2):106-118. doi:10.1038/nrneurol.2012.263.
  1. 33. Godfrey ME, Wojcik DP, Krone CA. Apoplipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimer Dis. 2003; 5:189-195.
  1. 34. Ng S, Lin CC, Hwang YH, Hsieh WS, Liao HF, Chen PC. Mercury, APOE, and children's neurodevelopment. Neurotoxicology. 2013 Jul;37:85-92. doi: 10.1016/j.neuro.2013.03.012. Epub 2013 Apr 18.
  1. 35. Sankalp Gokhale & Daniel T Laskowitz (2013) ApoE and outcome after traumatic brain injury, Clinical Lipidology, 8:5, 561-571
  1. 36. Giunco, CT., et al. Association between APOE polymorphisms and predisposition for autism. Psychiatric Genetics: December 2009 - Volume 19 - Issue 6 - p 338.
  1. 37. Acevedo S, Piper B, Craytor M, Benice T, and Raber J. Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatr Res. 2010 March; 67(3): 293–299.
  1. 38. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D'Angelo G, Liu C, Dixit S, Benzinger T, Fagan A, Goate A, Mintun MA. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci. 2010 Dec 15;30(50):17035-40.
  1. 39. Kuroda MMM, Weck ME, Sarwark JF, Hamidullah A, Wainwright MS. Association of apolipoprotein E genotype and cerebral palsy in children. Pediatrics. 2007; 119(2):306–313.
  1. 40. Kuroda MMM, Weck ME, Sarwark JF, Hamidullah A, Wainwright MS. Association of apolipoprotein E genotype and cerebral palsy in children. Pediatrics. 2007; 119(2):306–313.
  1. 41. Persico AM, et al. Enhanced APOE2 transmission rates in families with autistic probands. Psychiatr Genet. 2004 Jun;14(2):73-82.
  1. 42. Hövels-Gürich HH, Konrad K, Skorzenski D, Herpertz-Dahlmann B, Messmer BJ, Seghaye M-C. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg. 2007;83(4):1425–1430.
  1. 43. Watson GE, Evans K, Thurston SW, van Wijngaarden E, et al. Prenatal exposure to dental amalgam in the Seychelles Child Development Nutrition Study: associations with neurodevelopmental outcomes at 9 and 30 months. Neurotoxicology. 2012 Dec;33(6):1511-7. doi: 10.1016/j.neuro.2012.10.001. Epub 2012 Oct 12.
  1. 44. Ying Chena, Murat S. Durakoglugila, Xunde Xiana, Joachim Herza. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. PNAS June 29, 2010 vol. 107 no. 26 12011-12016. doi: 10.1073/pnas.0914984107.
  1. 45. Connors SL, et al. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotictwins. J Child Neurol. 2005 Nov;20(11):876-84.
  1. 46. Roman T, et al. Further evidence of the involvement of alpha-2A-adrenergic receptor gene (ADRA2A) in inattentive dimensional scores of attention-deficit/hyperactivity disorder. Mol Psychiat 2005, 10.1038/sj.mp.4001743.
  1. 47. Cheslack-Postava K, Fallin MD, Avramopoulos D, Connors SL, Zimmerman AW, Eberhart CG, Newschaffer CJ. beta2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort.. Mol Psychiatry. 2007 Mar;12(3):283-91. Epub 2007 Jan 2.
  1. 48. Croen LA, et al. Prenatal exposure to β2-adrenergic receptor agonists and risk of autism spectrum disorders. J Neurodev Disord. 2011 Dec;3(4):307-15. Epub 2011 Aug 27.
  1. 49. Ananth Narayanan, et al. Effect of Propranolol on Functional Connectivity in Autism Spectrum Disorder—A Pilot Study. Brain Imaging and Behavior (2010) 4:189–197.
  1. 50. Hartley L. et al. The Effect of Beta Adrenergic Blocking Drugs on Speakers Perfomance and Memory. British Journal of Psychiatry. 142.
  1. 51. Witter FR, Zimmerman AW, Reichmann JP, Connors SL. In utero beta 2 adrenergic agonist exposure and adverse neurophysiologic and behavioral outcomes. Am J Obstet Gynecol. 2009 Dec;201(6):553-9.
  1. 52. Suppiej A, Franzoi M, Gentilomo C, Battistella PA, Drigo P, Gavasso S, Laverda AM, Simioni P. High prevalence of inherited thrombophilia in 'presumed peri-neonatal' ischemic stroke. Eur J Haematol. 2008 Jan;80(1):71-5. Epub 2007 Nov 19.
  1. 53. Ballantyne AO, Spilkin AM, Hesselink J, Trauner DA. Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain. 2008;131:2975–2985.
  1. 54. Stella CL, et al. Fetal thrombophilia, perinatal stroke, and novel ideas about CP. OBG Management 2008; 20(10): 26
  1. 55. Herak DC, Antolic MR, Krleza JL, et al. Inherited prothrombotic risk factors in children with stroke, transient ischemic attack, or migraine. Pediatrics. 2009;123:e653–e660.
  1. 56. Ricci D, Mercuri E, Barnett A, et al. Cognitive outcome at early school age in term-born children with perinatally acquired middle cerebral artery territory infarction. Stroke. 2008; 39:403–410.
  1. 57. Bauer, K.A. Prothrombin G20210A mutation. In T.W. Post, P. Rutgeerts, & S. Grover (Eds.), 2018, UptoDate. Available from https://www.uptodate.com/contents/prothrombin-g20210a-mutation?
  1. 58. Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD, Collins R, et al. (2006). "Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls". Lancet. 367 (9511): 651–8.
  1. 59. Harum KH, Hoon AH, Casella JF. Factor V Leiden: a risk factor for cerebral palsy. Dev Med Child Neurol 1999; 41: 7815.
  1. 60. Halliday JL, Reddihough D, Byron K, Ekert H, Ditchfield M. Hemiplegic cerebral palsy and the factor V Leiden mutation. J Med Genet 2000; 37: 7879.
  1. 61. Lynch JK, Nelson KB, Curry CJ, Grether JK. Cerebrovascular disorders in children with the factor V Leiden mutation. J Child Neurol 2001; 16: 73544.
  1. 62. Neggers Y. The Relationship between Folic Acid and Risk of Autism Spectrum Disorders. Samman S, Darnton-Hill I, eds. Healthcare. 2014;2(4):429-444. doi:10.3390/healthcare2040429.
  1. 63. Gao Y, Sheng C, Xie R, et al. New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children – A Systematic Review. Rosenfeld CS, ed. PLoS ONE. 2016;11(11):e0165626. doi:10.1371/journal.pone.0165626.
  1. 64. Schmidt, Rebecca & Lasalle, Janine. (2010). Interactions between Folate, Other B Vitamins, DNA Methylation, and Neurodevelopmental Disorders. 317-361. 10.1201/b10449-14.
  1. 65. Allis CD, Jenuwein T, Reinberg D, Caparros M, editors. Epigenetics. New York: Cold Spring

Harbour Laboratory Press; 2007.

  1. 66. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38(1):23-38. doi:10.1038/npp.2012.112.
  1. 67. Ye et al. A Metabolic Function for Phospholipid and Histone Methylation, 2017, Molecular Cell 66, 180–193.
  1. 68. Choi, Junhong; Ieong, Ka-Weng; Demirci, Hasan; Chen, Jin; Petrov, Alexey; Prabhakar, Arjun; O'Leary, Seán E.; Dominissini, Dan; Rechavi, Gideon. "N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics". Nature Structural & Molecular Biology, 2016. 23 (2): 110–115
  1. 69. Pearce K, Cai D, Roberts AC, Glanzman DL. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Ramaswami M, ed. eLife. 2017;6:e18299. doi:10.7554/eLife.18299.
  1. 70. Miller AL. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev. 2008 Sep;13(3):216-26.
  1. 71. Pfeiffer L, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015 Apr;8(2):334-42. doi: 10.1161/CIRCGENETICS.114.000804. Epub 2015 Jan 12.
  1. 72. Ulrich CM, Toriola AT, Koepl LM, et al. Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women. Epigenetics. 2012;7(9):1020-1028. doi:10.4161/epi.21464.
  1. 73. Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011 Jul;22(4):476-85.
  1. 74. Schmidt RJ, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr. 2012 Jul;96(1):80-9. Epub 2012 May 30.
  1. 75. Schmidt RJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology (Cambridge, Mass). 2011; 22(4):476-485. doi:10.1097/EDE.0b013e31821d0e30.
  1. 76. del Rio Garcia C, Torres-Sanchez L, Chen J, et al. Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci. 2009; 12:13-20.
  1. 77. Schlotz W, Jones A, Phillips DI, et al. Lower maternal folate status in early pregnancy is associated with childhood hyper-activity and peer problems in offspring. J Child Psychol Psy-chiatry. 2010; 51-5: 594-602.
  1. 78. Boris M, Goldblatt A, Galanko J. et al. Association of MTHFR Gene Variants with Autism. Journal of American Physicians and Surgeons. 2004;9:106-8
  1. 79. Krull KR, Brouwers P, Jain N. et al. Folate Pathway Genetic Polymorphisms are Related to Attention Disorders in Childhood Leukemia Survivors. J Pediatr. 2008;152(1):101-5
  1. 80. Cem Gokcen , Nadir Kocak, Ahmet Pekgor.Methylenetetrahydrofolate Reductase Gene Polymorphisms in Children with Attention Deficit Hyperactivity Disorder. Int J Med Sci 2011; 8(7):523-528. doi:10.7150/ijms.8.523.
  1. 81. Young SN, Shalchi M. The effect of methionine and S-adenosylmethionine on S-adenosylmethionine levels in the rat brain. Journal of Psychiatry and Neuroscience. 2005;30(1):44-48.
  1. 82. Christensen KE, et al. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum Mutat. 2009 Feb;30(2):212-20. doi: 10.1002/humu.20830.
  1. 83. Jiang J, Zhang Y, Wei L, Sun Z, Liu Z.Association between MTHFD1 G1958A polymorphism and neural tube defects susceptibility: a meta-analysis. PLoS One. 2014 Jun 30;9(6):e101169. doi: 10.1371/journal.pone.0101169. eCollection 2014.
  1. 84. Tunbridge E. M., Harrison P. J. Importance of the COMT gene for sex differences in brain function and predisposition to psychiatric disorders. Current Topics in Behavioral Neurosciences. 2011;8:119–140. doi: 10.1007/7854_2010_97.
  1. 85. De Castro-Catala M, Barrantes-Vidal N, Sheinbaum T, Moreno-Fortuny A, Kwapil TR, Rosa A. COMT-by-Sex Interaction Effect on Psychosis Proneness. BioMed Research International. 2015;2015:829237. doi:10.1155/2015/829237.
  1. 86. Gepshtein S, Li X, Snider J, Plank M, Lee D, Poizner H. Dopamine Function and the Efficiency of Human Movement. Journal of cognitive neuroscience. 2014;26(3):645-657. doi:10.1162/jocn_a_00503.
  1. 87. Wallace DL, Aarts E, Uquillas F d’Oleire, et al. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of “unhealthy” foods. Appetite. 2015;92:74-80. doi:10.1016/j.appet.2015.05.004.
  1. 88. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry. 2002; 159:652–654. doi: 10.1176/appi.ajp.159.4.652.
  1. 89. Bishop Sonia J y cols. COMT genotype influences prefrontal response to emotional distraction. Cognitive, Affective, & Behavioral Neuroscience 2006, 6(1): 62-70.
  1. 90. Bishop SJ, Fossella J, Croucher CJ, Duncan J. COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cereb Cortex 2008, 18:2132--2140.
  1. 91. de Frias CM y cols. Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task. J Cogn Neurosci. 2009, 22:1614--1622.
  1. 92. Qian Q, Wang Y, Zhou R, Li J, Wang B, Glatt S, Faraone SV. Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet. 2003; 118B:103–109. doi: 10.1002/ajmg.b.10064.
  1. 93. Thapar A., Langley K., Fowler T., Rice F., Turic D., Whittinger N., et al. (2005). Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry 62, 1275-1278.
  1. 94. Halleland H. y cols. Association Between Catechol O-methyltransferase (COMT) Haplotypes and Severity of Hyperactivity Symptoms in Adults. Am J Med Genet 2009, Part B 150B:403–410.
  1. 95. Pálmason H., Moser D., Sigmund J., Vogler C., Hänig S., Schneider A., et al. (2010). Attention-deficit/hyperactivity disorder phenotype is influenced by a functional catechol-O-methyltransferase variant. Journal of Neural Transmission, 117,259-67.
  1. 96. Nijmeijer J.S. y cols. Perinatal Risk Factors Interacting With Catechol O-Methyltransferase and the Serotonin Transporter Gene Predict ASD Symptoms in Children With ADHD. J Child Psychology and Psychiatry and Allied Disciplines, 51, 1242-1250, 2010.
  1. 97. Kereszturi E, Tarnok Z, Bognar E, Lakatos K, Farkas L, Gadoros J, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1431–5.
  1. 98. A. Salatino-Oliveira y cols. Catechol-O-Methyltransferase Valine158Methionine Polymorphism Moderates Methylphenidate Effects on Oppositional Symptoms in Boys with Attention-Deficit/Hyperactivity DisorderBiol Psychiatry 2011;70:216–221.
  1. 99. Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ. Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology (Berl). 2001;154(1):105-11.
  1. 100. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry. 2003 Oct;160(10):1887-9.
  1. 101. Hamidovic A, et al. Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatric Genetics 2010, 20:85–92.
  1. 102. Zhang Y. et al.Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20552-7. Epub 2007 Dec 11.
  1. 103. Laucht M, et al. Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry. 2008 Jun;47(6):673-81. doi: 10.1097/CHI.0b013e31816bff77.
  1. 104. Luykx JJ, Broersen JL, de Leeuw M. The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017 Mar;74(Pt A):214-224. doi: 10.1016/j.neubiorev.2017.01.006. Epub 2017 Jan 16.
  1. 105. Voisey J et al. The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety. 2009;26(1):28-33. doi: 10.1002/da.20517.
  1. 106. Cho AR, Lee SM, Kang WS, Kim SK, Chung J-H. Assessment between Dopamine Receptor D2 (DRD2) Polymorphisms and Schizophrenia in Korean Population. Clinical Psychopharmacology and Neuroscience. 2012;10(2):88-93. doi:10.9758/cpn.2012.10.2.88.
  1. 107. Ouellet-Morin I, et al. Association of the dopamine transporter gene and ADHD symptoms in a Canadian population-based sample of same-age twins. Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1442-9. doi: 10.1002/ajmg.b.30677.
  1. 108. Hamilton PJ, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013 Dec;18(12):1315-23. doi: 10.1038/mp.2013.102. Epub 2013 Aug 27.
  1. 109. Pinsonneault JK, Papp AC, Sadée W. Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet. 2006 Sep 1;15(17):2636-49. Epub 2006 Aug 7.
  1. 110. Cohen IL, et al. Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet. 2003 Sep;64(3):190-7.
  1. 111. Kisková J, Gabriková D. The Role of MAOA Gene in the Etiology of Autism Spectrum Disorder in Males. International Scholarly and Scientific Research & Innovation 9(2) 2015.
  1. 112. Clemens B, et al. Effect of MAOA Genotype on Resting-State Networks in Healthy Participants, Cerebral Cortex, Volume 25, Issue 7, 1 July 2015, Pages 1771–1781,
  1. 113. Brunner HG; Nelen MR; van Zandvoort P; Abeling NGGM; van Gennip AH; Wolters EC; Kuiper MA; Ropers HH; van Oost BA (June 1993). "X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism". Am. J. Hum. Genet. 52 (6): 1032–9.
  1. 114. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (October 1993). "Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A". Science. 262 (5133): 578–80.
  1. 115. Gutiérrez B, et al. Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatr Genet. 2004 Dec;14(4):203-8.
  1. 116. Tadic A, et al. Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. Am J Med Genet B Neuropsychiatr Genet. 2003 Feb; 117B(1):1-6.
  1. 117. Tafet GE, et al. Correlation between cortisol level and serotonin uptake in patients with chronic stress and depression. Cogn Affect Behav Neurosci. 2001 Dec;1(4):388-93.
  1. 118. Fogel WA, Lewinski A, Jochem J. Histamine in food: is there anything to worry about? Biochemical Society Transactions (2007) Volume 35, part 2.
  1. 119. Liu B, Liu J, Wang M, Zhang Y, Li L. From Serotonin to Neuroplasticity: Evolvement of Theories for Major Depressive Disorder. Frontiers in Cellular Neuroscience. 2017;11:305. doi:10.3389/fncel.2017.00305.
  1. 120. Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience. 2016;321:24-41. doi:10.1016/j.neuroscience.2015.11.010.
  1. 121. Veenstra-VanderWeele J, Muller CL, Iwamoto H, et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(14):5469-5474. doi:10.1073/pnas.1112345109.
  1. 122. Wendland JR, et al. Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Molecular Psychiatry (2006) 11, 224–226. doi:10.1038/sj.mp.4001789; published online 10 January 2006.
  1. 123. Grabe HJ, et al. Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry. 2009 Aug;166(8):926-33. doi: 10.1176/appi.ajp.2009.08101542. Epub 2009 Jun 1.
  1. 124. Gadow KD, et al. Allele-specific associations of 5-HTTLPR/rs25531 with ADHD and autism spectrum disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry 40 (2013) 292–297.
  1. 125. Francès F, Portolés O, Castelló A, Costa JA, Verdú F.Association between Opioid Receptor mu 1 (OPRM1) Gene Polymorphisms and Tobacco and Alcohol Consumption in a Spanish Population. Bosn J Basic Med Sci. 2015 Apr 25;15(2):31-6. doi: 10.17305/bjbms.2015.243.
  1. 126. Becker JA, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL. Autistic-Like Syndrome in Mu Opioid Receptor Null Mice is Relieved by Facilitated mGluR4 Activity. Neuropsychopharmacology. 2014;39(9):2049-2060. doi:10.1038/npp.2014.59.
  1. 127. Chamorro AJ, et al. Association of µ-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: a systematic review and meta-analysis. Addict Biol. 2012 May;17(3):505-12. doi: 10.1111/j.1369-1600.2012.00442.x.
  1. 128. Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 1990;12:319–26.
  1. 129. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 1999;134:33–41.
  1. 130. Jacobson JL, Jacobson SW. Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr 2003;143:780–8.  
  1. 131. Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R et al. In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school–age children. J Epidemiol 2005;162:17–26.
  1. 132. Orito K, Gotanda N, Murakami M, Ikeda T, Egashira N et al. Prenatal exposure to 3,3',4,4',5–pentachlorobiphenyl (PCB126) promotes anxiogenic behavior in rats. Tohoku J Exp Med 2007;212:151–7.
  1. 133. Chiu YH, et al. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ Int. 2016 Feb;87:56-65. doi: 10.1016/j.envint.2015.11.010. Epub 2015 Nov 28.
  1. 134. Tran NQV, Miyake K. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. International Journal of Genomics. 2017;2017:7526592. doi:10.1155/2017/7526592.
  1. 135. Gribble MO, Karimi R, Feingold BJ, et al. Mercury, selenium and fish oils in marine food webs and implications for human health. J Mar Biol Assoc U.K. 2016 Feb;96(1):43-59. Epub 2015 Sep 8.
  1. 136. Altaf Alabdali, Laila Al-Ayadhi and Afaf El-Ansary. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behavioral and Brain Functions2014, 10:14. DOI: 10.1186/1744-9081-10-14
  1. 137. Grant DM. Detoxification pathways in the liver. J Inherit Metab Dis. 1991;14(4):421-30.
  1. 138. Hsieh CJ1, Jeng SF, Wu KY, Su YN, Liao HF, Hsieh WS, Chen PC. GSTM1 modifies the effect of maternal exposure to environmental tobacco smoke on neonatal primitive reflexes. Nicotine Tob Res. 2011 Nov;13(11):1114-22. doi: 10.1093/ntr/ntr124. Epub 2011 Aug 17.
  1. 139. Steven Buyske et al. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genetics 2006, 7:8 doi:10.1186/1471-2156-7-8.
  1. 140. Buyske S. y cols. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genetics 2006, 7:8.
  1. 141. Morales E, Sunyer J, Julvez J, Et Al. GSTM1 polymorphisms modify the effect of maternal smoking during pregnancy on cognitive functioning in preschoolers. International Journal of Epidemiology 2009;38:690–697. doi:10.1093/ije/dyp141.
  1. 142. Paintlia, M. K., Paintlia, A. S., Contreras, M. A., Singh, I. & Singh, A. K. (2008). Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: Attenuation by N-acetyl cysteine. Experimental Neurology, 210(2), 560-76.
  1. 143. Hsieh CJ, Liao HF, Wu KY, Hsieh WS, Su YN, Jeng SF, Yu SN, Chen PC. CYP1A1 Ile462Val and GSTT1 modify the effect of cord blood cotinine on neurodevelopment at 2 years of age. Neurotoxicology. 2008 Sep;29(5):839-45. doi: 10.1016/j.neuro.2008.05.006. Epub 2008 Jun 3.
  1. 144. Delpisheh A, Brabin L, Topping J, Reyad M, Tang AW, Brabin BJ.A case-control study of CYP1A1, GSTT1 and GSTM1 gene polymorphisms, pregnancy smoking and fetal growth restriction. Eur J Obstet Gynecol Reprod Biol. 2009 Mar;143(1):38-42. doi: 10.1016/j.ejogrb.2008.11.006. Epub 2009 Jan 14.
  1. 145. Ighodaro O.M., Akinloye O.A.. irst line defence antioxidants-superoxide dismutase (SOD), catalase(CAT) and glutathione peroxidase (GPX): Their fundamental role in theentire antioxidant defence grid. Alex J Med (2017), https://doi.or g/10.1016/j.ajme.2017.09.001.
  1. 146. Robin Bernhoft, Rashid Buttar. Autism: A Multi-System Oxidative and Inflammatory Disorder. Townsend Letter, April, 2008, pp 86-90.
  1. 147. Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ (2003). Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112: e420–e424.
  1. 148. Romero, R., Gotsch, F., Pineles, B. & Kusanovic, J. P. (2007). Inflammation in pregnancy: Its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutrition Reviews, 65(12 Pt. 2), S194-202.
  1. 149. Sorokin Y, Romero R, Mele L, Wapner RJ, Et al. Maternal serum interleukin-6, C-reactive protein, and matrix metalloproteinase-9 concentrations as risk factors for preterm birth <32 weeks and adverse neonatal outcomes. Am J Perinatol. 2010 Sep;27(8):631-40. doi: 10.1055/s-0030-1249366.
  1. 150. Ryan M. McAdams and Sandra E. Juul, “The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury,” Neurology Research International, vol. 2012, Article ID 561494, 15 pages, 2012. doi:10.1155/2012/561494.
  1. 151. Kim Y, Kim L, Lee MS.Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res. 2000 Sep 1;44(3):165-75.
  1. 152. Jyonouchi H. Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev Clin Immunol. 2010 May;6(3):397-411. doi: 10.1586/eci.10.18.
  1. 153. Jyonouchi H, Geng L, Cushing-Ruby A, Quraishi H. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study. J Neuroinflammation. 2008 Nov 21; 5:52. Epub 2008 Nov 21
  1. 154. Croonenberghs J, et al. Activation of the inflammatory response system in autism. Neuropsychobiology. 2002;45(1):1-6.
  1. 155. Cawthorpe D. Comprehensive Description of Comorbidity for Autism Spectrum Disorder in a General Population. The Permanente Journal. 2017;21:16-088. doi:10.7812/TPP/16-088.
  1. 156. Bauman ML. Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 2010;7:320–7.
  1. 157. Buie T, Campbell DB, Fuchs GJ 3rd, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010;125suppl 1:S1–18.
  1. 158. Ajamian M, Kosofsky BE, Wormser GP, Rajadhyaksha AM, Alaedini A. Serologic Markers of Lyme Disease in Children with Autism. JAMA : the journal of the American Medical Association. 2013;309(17):1771-1773. doi:10.1001/jama.2013.618.

Christopher J McDougle and William A Carlezon. Neuroinflammation and Autism: Toward Mechanisms and Treatments. Neuropsychopharmacology Reviews (2013) 38, 241–242; doi:10.1038/npp.2012.174

  1. 159. Meguid NA, et al. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J Altern Complement Med 2010, 16:641-645.
  1. 160. Levenson CW, Figueirôa SM: Gestational vitamin D deficiency. long-term effects on the brain. Nutr Rev 2008, 66:726-729.
  1. 161. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34: 47–64. doi: 10.1016/j.yfrne.2012.07.001.
  1. 162. Cannell JJ: Autism and vitamin D. Med Hypotheses 2008, 70:750-759.
  1. 163. Kočovská E, et al. Vitamin D and autism: clinical review. Res Dev Disabil 2012, 33:1541-1550.